• 제목/요약/키워드: melt-spinning process

검색결과 55건 처리시간 0.036초

Studies on Melt Spinning of PET Hollow Fibers

  • O Tae-Hwan;Lee Mu-Seok;Kim Sang-Yong;Sim Hyeon-Ju
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.111-115
    • /
    • 1998
  • Fiber spinning is a continuous deformation process by which material is converted into a fiber. The melt spinning process was analyzed mainly by employing an asymptotic method of the so-called thin filament equations which formulates dynamics of spinning process by averaging over the cross-section of filament the set of fundamental equations. The method gives the approximate results for commonly used circular fiber spinning.(omitted)

  • PDF

용융형 전기방사법에 의한 폴리에스테르섬유의 방사거동과 구조에 관한 연구 (Study on Spinning Behavior and Structure of Polyester Fibers by the Melt-type Electrospinning Method)

  • Lee, Jin-Ah;Lim, Min-Soo;Joo, Chang-Whan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.273-276
    • /
    • 2002
  • The fiber formation of conventional melt spinning is extruded by forcing the polymer melt through a spinneret by pumping mechanism usually involving high pressure. This is followed by cooling, solidification and appropriate drawing of the fiber. The spinning process is broadly applicable to polyolefin, polyamide, polyester and indeed the whole range of fibers forming thermoplastic polymers. (omitted)

  • PDF

Effects of Nucleating Agents on Preparation of Polypropylene Hollow Fiber Membranes by Melt Spinning Process

  • Kim, Bong-Tae;Kigook Song;Kim, Sung-Soo
    • Macromolecular Research
    • /
    • 제10권2호
    • /
    • pp.127-134
    • /
    • 2002
  • Microporous polypropylene hollow fiber membrane was fabricated from isotactic polypropylene-soybean oil system by melt spinning process. Addition of nucleating agent accelerated the crystallization rate and elevated the crystallization temperature. Nucleating agent increased the number of nuclei and spherulites, which offered more inter-spherulitic amorphous sites for stretching. Benzoic acid, adipic acid, and dibenzylidene sorbitol were selected as nucleating agents, and their characteristics and effects were investigated by thermal and optical analyses. Spherulite growth and micropore formation characteristics were correlated with the kind of nucleating agent. Benzoic acid and adipic acid showed the remarkable nucleating effect, while dibenzylidene sorbitol was less effective than those. Nucleating agents also helped the sample have uniform microporous structure. Increase of nucleating agent composition enhanced the nucleation effect to some extent. Nucleating agents played very important roles in enhancing the membrane porosity and water flux.

용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구 (Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters)

  • 정우창;김삼수;이상오;이재웅
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.

Melt spinning법에 의한 n형 90% $Bi_2Te_3$+10% $Bi_2Se_3$ 열전소결체의 열전특성 (Thermoelectric Properties of N-type 90% $Bi_2Te_3$+10% $Bi_2Se_3$ Thermoelectric Materials Produced by Melt spinning method and Sintering)

  • 김익수
    • 한국분말재료학회지
    • /
    • 제5권1호
    • /
    • pp.50-56
    • /
    • 1998
  • A new process using rapid solidification (melt spinning method) followed by pressing and sintering was investigated to produce the n-type thermoelectric ribbons of 90% $Bi_2Te_3$+10% $Bi_2Se_3$ doped with $CdCl_2$. Quenched ribbons are very brittle and consisted of homogeneous $Bi_2Te_3-Bi_2Se_3$ pseudo-binary solid solutions. Property variations of the materials was investigated as a function of variables, such as dopant $CdCl_2$ quantity and sintering temperature. When the process parameters were optimized, the maximum figure of merit was $2.146{\times}10^{-3}K^{-1}$.

  • PDF

Poly(lactic acid) 용융방사공정의 동역학 해석 (Analysis on Po1y(lactic acid) Melt Spinning Dynamics)

  • 오태환;김성철
    • 청정기술
    • /
    • 제15권4호
    • /
    • pp.245-252
    • /
    • 2009
  • Poly(lactic acid) (PLA) 용융방사공정의 속도, 직경, 온도, 인장응력 분포를 구하기 위해 수치모사를 실시하였다. 유한차분법을 이용하여 반지름 방향으로의 온도분포곡선을 구하였다. 방사속도 1 km/min에서 5 km/min까지 방사속도에 따른 PLA 방사공정의 변화와 poly(ethylene terephthalate) (PET)와의 거동을 비교해 보았고, 방사공정변수가 섬유 중심부와 표면과의 온도차에 미치는 영향을 살펴보았다. PLA는 용융온도가 PET에 비해 낮음에도 불구하고 동일 방사조건에서 더딘 냉각속도를 보였고 방사거리에 따른 방사속도의 증가도 PET가 더 빠른 양상을 나타내었다. PLA의 섬유중심부와 섬유표면과의 온도차는 약 4.6 K에 이르렀는데, 이는 PET의 10.4 K에 비하여 낮은 값이다. PLA 섬유중심부와 표면과의 온도차는 냉각풍속도와 방사온도가 증가할수록 증가하였고, 냉각풍 온도가 감소할수록 증가하는 경향을 나타내었다.

Effect of constitutive equations on theoretical analysis in melt spinning process

  • Kim, Seong-Cheol;Oh, Tae-Hwan;Han, Sung-Soo;Lyoo, Won-Seok
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.149-153
    • /
    • 2009
  • Profile development of the melt spinning process of poly(ethylene terephthalate) (PET) was simulated by a numerical method under the consideration of two constitutive equations of Newtonian and upper convected Maxwell (UCM) models. The viscoelastic characteristics of the polymer were considered via UCM constitutive equation that considered relaxation time as a function of temperature and molecular weight. The UCM model predicted the diameter profile better than the Newtonian, while velocity development was slower than the Newtonian model. Viscoelasticity played an important role in accurately predicting diameter profile. However, even though neck-like deformation was observed in the UCM model, the exact position of the deformation under high speed spinning was not obtained.

Al-Fe-Mo 합금에서 준결정상의 생성 및 열분해에 관한 연구 (Formation and Thermal Decomposition of a Quasicrystalline Phase in Al-Fe-Mo Alloys)

  • 김석환
    • 열처리공학회지
    • /
    • 제18권6호
    • /
    • pp.362-368
    • /
    • 2005
  • Formation and thermal stability of a quasicrystalline phases in Al-Fe-Mo alloys were investigated by means of melt-spinning process and subsequent heat treatment test. Thermal decomposition and phase transformation process of the as-spun alloys were studied using X-ray diffraction and electron microscopy. The melt-spun Al-Fe-Mo alloys contained an icosahedral quasicrystalline phase with a quasilattice constant of 0.457 nm. Icosahedral phase formed at a composition of $Al_{82.5}Fe_{14}Mo_{3.5}$ as a metastable phase during rapid solidification was transformed into the stable crystalline phases, cubic 1/0 approximant and monoclinic ${\lambda}$-phase, upon heating. A metastable icosahedral and cubic(a = 0.93 nm) phases in as-spun $Al_{65}Fe_{20}Mo_{15}$ alloy were decomposed into two cubic(a = 0.62, 0.31 nm) phases by heat treatment.

초고속 용융 원심방사를 이용한 폴리에틸렌 마이크론 섬유의 제조 (Preparation of Polyethylene Micro-fibers by High Speed Centrifugal Melt Spinning)

  • 양성백;이정언;지병철;주남식;염정현
    • 한국염색가공학회지
    • /
    • 제32권4호
    • /
    • pp.239-244
    • /
    • 2020
  • Polyethylene (PE) micro-fiber have been prepared at different hot air temperature (60, 80 and 100 ℃) and different pressure (20, 40, 60 and 80 kPa) by melt centrifugal spinning technique. The parameters of melting centrifugal spinning including polymer contents, rotational velocity, temperature of hot air and pressure were optimized for the fabrication process. The study showed that 8000 rpm rotational velocity, 80 ℃ heated hot air and 40 kPa air pressure are the best condition to obtain uniform and strong PE fiber. The prepared PE fibers were analyzed by field emission scanning electron microscope and universal testing machine and found that fibers with reduced diameter and improved tensile strength are obtained at hot air condition.

급속응고한 Al-Be합금의 미세조직 및 인장특성 (Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy)

  • 이인우;박현호;김명호
    • 한국주조공학회지
    • /
    • 제15권5호
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF