DOI QR코드

DOI QR Code

Analysis on Po1y(lactic acid) Melt Spinning Dynamics

Poly(lactic acid) 용융방사공정의 동역학 해석

  • 오태환 (영남대학교 섬유패션학부) ;
  • 김성철 (영남대학교 섬유패션학부)
  • Published : 2009.12.31

Abstract

Profiles development of melt spinning process of poly(lactic acid) (PLA) was simulated via a numerical method and the radial temperature distribution was calculated using finite difference method. The spinning speed ranged from 1 km/min to 5 km/min was analyzed and the effect of spinning conditions on the radial temperature distribution was investigated. At low spinning speed, the difference between PLA and poly(ethylene terephthalate) (PET) was relatively small. As the spinning speed increased, the difference in velocity profile became prominent. PLA showed a slower spinning speed than PET and solidified more slowly. The temperature difference between the core and surface of the PLA filament reached 4.6 K, which was less than that of PET filament with a difference of 10.4 K. The radial temperature difference increased with increasing the cooling-air velocity and the spinning temperature.

Poly(lactic acid) (PLA) 용융방사공정의 속도, 직경, 온도, 인장응력 분포를 구하기 위해 수치모사를 실시하였다. 유한차분법을 이용하여 반지름 방향으로의 온도분포곡선을 구하였다. 방사속도 1 km/min에서 5 km/min까지 방사속도에 따른 PLA 방사공정의 변화와 poly(ethylene terephthalate) (PET)와의 거동을 비교해 보았고, 방사공정변수가 섬유 중심부와 표면과의 온도차에 미치는 영향을 살펴보았다. PLA는 용융온도가 PET에 비해 낮음에도 불구하고 동일 방사조건에서 더딘 냉각속도를 보였고 방사거리에 따른 방사속도의 증가도 PET가 더 빠른 양상을 나타내었다. PLA의 섬유중심부와 섬유표면과의 온도차는 약 4.6 K에 이르렀는데, 이는 PET의 10.4 K에 비하여 낮은 값이다. PLA 섬유중심부와 표면과의 온도차는 냉각풍속도와 방사온도가 증가할수록 증가하였고, 냉각풍 온도가 감소할수록 증가하는 경향을 나타내었다.

Keywords

References

  1. Narayan, R., "Drivers and Technology Examples: Biobased & Biodegradable Polymer Materials," in Khemmani, K. C., and Scholz, C., Eds., Rationale, ACS, Washington DC (2006).
  2. Lipinsky, E. S., and Sinclair, R. G., "Is Lactic Acid a Commodity Chemical?," Chem. Eng. Prog., 82, 26-31 (1986).
  3. Kim, Y. H., and Yi. J. H., "Environmental Sensing Technology with Nanotechnology for the Clean Technology," Clean Tech., 11, 75-82 (2005).
  4. Mezghani, K., and Spruiell, J. E., "High Speed Melt Spinning of Poly(L-lactic acid) Filaments," J. Polym. Sci. Pol. Phys., 36, 1005-1012 (1998). https://doi.org/10.1002/(SICI)1099-0488(19980430)36:6<1005::AID-POLB9>3.0.CO;2-V
  5. Fambri, L., Pegoretti, A., Mazzurana, M., and Migliaresi, C. J., "Biodegradable Fibers," J. Mater. Sci-Mater. M., 5, 679-683 (1994). https://doi.org/10.1007/BF00120355
  6. Janzen, J., Dorgan, J. R., Knauss, D. M., Hait, S. B., Limoges, B. R., and Hutchinson, M. H., "Fundamental Solution and Single Chain Properties of Polylactides," J. Polym. Sci. Pol. Phys., 43, 3100-3111 (2005) https://doi.org/10.1002/polb.20577
  7. Dorgan, J. R., Lehermeier, H., and Mang, M., "Thermal and Rheological Properties of Commercial Grade Poly(lactic acid)s," J. Polym. Environ., 8, 1-9 (2000). https://doi.org/10.1023/A:1010185910301
  8. Rarnkumar, D. H. S., and Bhattacharya, M., "Steady Shear and Dynamic Properties of Biodegradable Polyesters," Polym. Eng. Sci., 38, 1426-1435 (1998). https://doi.org/10.1002/pen.10313
  9. Kase, S., and Matsuo, T., "Studies on Melt Spinning. I. Fundamental Equations on the Dynamics of Melt Spinning," J. Polym. Sci. Pol. Chem., 3, 2541-2554 (1965).
  10. Kikutani, T., Radhakrishnan, J., Arikawa, S., Takaku, A., Okui, N., Jin, X. Niwa, f., and Kudo, Y., "High-speed Melt-spinning of Bicomponent Fibers-Mechanism of Fiber Structure Development in Poly(ethylene Terephthalate)/ Polypropylene System," J. Appl. Polym. Sci., 62, 1913-1924 (1996), https://doi.org/10.1002/(SICI)1097-4628(19961212)62:11<1913::AID-APP16>3.0.CO;2-Z
  11. Shenoy, A. V., and Nadkarni, V., M., "Using Poly(ethylene Terephthalate) Melt Spinning Simulation for Process Optimization," Text. Res. J., 54, 778-783 (1984). https://doi.org/10.1177/004051758405401112
  12. Dutta, A., and Nadkarni, V. M., "Identifying Critical Process Variables in PET Melt Spinning," Text. Res. J., 54, 35-42 (1984). https://doi.org/10.1177/004051758405400108
  13. Cooper-White, J. J., and Mackay, M. E., "Rheological Properties of Poly(lactides). Effect of Molecular Weight and Temperature on the Viscoelasticity of Poly(1-lactin acid)", J. Polym. Sci. Pol. Phys., 37, 1803-1814 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990801)37:15<1803::AID-POLB5>3.0.CO;2-M
  14. Hutchenson, K. W., Edie, D. D., and Riggs, D. M., "Calculated Internal Stress distributions in Melt-spun Fibers," J. Appl. Polym. Sci., 33, 1073-1088 (1987). https://doi.org/10.1002/app.1987.070330404
  15. Oh, T. H., Nam, Y. S., Kim, K. J., and Kim, Y. H., "Theoretical Analysis of the Melt Spinning Process of Poly(trimethylene Terephthalate) Fibers," Fiber. Polym., 8, 507-511 (2007). https://doi.org/10.1007/BF02875873