• Title/Summary/Keyword: Nano-processing

Search Result 548, Processing Time 0.025 seconds

Digital Image Stabilization of Robot Buoy Using the Image of Mechanism (기구 메커니즘의 영상 정보를 이용한 부표 로봇의 영상 안정화)

  • Im, Eun;Myeong, Ho-Jun;Kim, Young-Jin;Yim, Choong-Hyuk;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.645-651
    • /
    • 2012
  • In this paper, we propose a new method for stabilizing the image captured from a camera mounted on a buoy robot. In this study, in order to solve the problem of cumulative errors and noise produced by a general gyro sensor measuring the orientation angle of the buoy robot, we propose new method for stabilizing the image. In this method, image processing techniques are combined with a newly designed target mounting mechanism that adapts to wave fluctuations. New target extraction and angle estimation techniques are introduced, along with the new mounting mechanism used for the camera and the target, which produce a stabilized image even if the buoy robot is on fluctuating waves.

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

Structural Properties of Nickel Manganite Thin Films Fabricated by Metal Organic Decomposition (금속유기분해법으로 제조한 니켈 망가나이트 박막의 구조적 특성)

  • Lee, Kui Woong;Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Nam, Joong Hee;Cho, Jeong Ho;Paik, Jong Hoo;Yoon, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.226-231
    • /
    • 2014
  • Thin thermistor films of solutions with nickel and manganese oxides were prepared by metal-organic decomposition (MOD). The structural properties of the thin films were investigated as a function of annealing temperature. Field emission scanning electron microscope (FE-SEM) results indicated that the thin films had a thin thickness, smooth and dense surface. The crystallization temperature of $414.9^{\circ}C$ was confirmed from thermogavimetric-differential thermal analysis (TG-DTA) curve. A single phase of cubic spinel structure was obtained for the thin film annealed from $700^{\circ}C$ to $800^{\circ}C$, which was confirmed from the X-ray diffraction (XRD). From the selected area electron diffraction (SAED) in high resolution transmission electron microscope (HRTEM), the nano grains (2~3 nm) of spinel phase with (311) and (222) planes were detected for the thin film annealed at $500^{\circ}C$, which could be applicable to read-out integrated circuit (ROIC) substrate of the uncooled microbolometer with low processing temperature.

Dielectric Properties of $Ta_2O_5-SiO_2$ Thin Films Deposited at Room Temperature by Continuous Composition Spread (상온에서 연속 조성 확산법에 의해 증착된 $Ta_2O_5-SiO_2$ 유전특성)

  • Kim, Yun-Hoe;Jung, Keun;Yoon, Seok-Jin;Song, Jong-Han;Park, Kyung-Bong;Choi, Ji-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • The variations of dielectric properties of $Ta_2O_5-SiO_2$ continuous composition spread thin films prepared by off-axis radio-frequency magnetron sputtering were investigated. The dielectric maps of dielectric constant and loss were plotted via 1500 micron-step measuring. The specific points showing superior dielectric properties of high dielectric constant (k~19.5) and loss (tan${\delta}$<0.05) at 1 MHz were found in area of the distance of 16 mm and 22 mm apart from $SiO_2$ side in $75{\times}25mm^2$ sized Pt/Ti/$SiO_2$/Si(100) substrates.

The preparation and characterization of poly(ethylene terephthalate)(PET)/layered silicate nanocomposite (PET 나노복합재료의 제조 및 특성분석)

  • 천상욱;손세범;곽승엽
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.21-24
    • /
    • 2003
  • In general, to enhance physical properties of PET-layered silicate nanocomposites $(P_{et}LSNs)$, it has been well known that the organic modifiers should introduce into gallery regions. However, the organic modifiers in$(P_{et}LSNs)$ may result in thermal decomposition by melt processing at high temperature, and it necessarily lead to deteriorate various physical properties of final products. Therefore, in this study, $(P_{et}LSNs)$ excluding and including organic modifiers were prepared by solution method $(S-P_{et}LSNs_{eom} and S-P_{et}LSNs_{iom})$ and we (focused on the effects of the organic modifiers in $P_{et}$ LSNs with exfoliation structure on the crystallization behaviors, the optical transparency, the thermal stability and the mechanical property. The absence and existence of organic modifiers in $S-P_{et}LSNs_{eom} and S-P_{et}LSNs_{iom}$ were investigated by EA and TGA, and nano-structure of silicate layers in $S-P_{et}LSNs$ was evaluated by using WXRD, SAXS and TEM. $S-P_{et}LSNs_{eom} and S-P_{et}LSNs_{iom}$ were mixed with neat PET as masterbatches by melt method $(M-P_{et}LSNs_{eom} and M-P_{et}LSNs_{iom})$, and also neat PET was mixed with organically modified layered silicates (OLS) by conventional direct melt method $(D-P_{et}LSNs) at 270^{\circ}C$. As results, it was found that $M-P_{et}LSNs_{eom}, M-P_{et}LSNs_{iom}, and D-P_{et}LSN$ showed a exfoliated structure and exhibited faster crystallization rate, better thermal stability and mechanical property than those of neat PET due to the dispersed and detaminated silicate layers in PET matrix. Whereas, considering organic modifiers effect, $M-P_{et}LSNs_{eom} and D-P_{et}LSN$ exhibited slower crystallization rate, poorer optical, thermal and mechanical properties, in comparison to $M-P_{et}LSNs_{eom}> due to the thermal decomposition of organic modifier in $D-P_{et}LSNs$ during melt method.

  • PDF

Preparation of SDC electrolyte film for IT-SOFCs by electrophoretic deposition (EPD를 이용한 IT-SOFC용 SDC 전해질 필름의 제조)

  • Lee, Kyeong-Seop;Jo, Chul-Gi;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.158-158
    • /
    • 2009
  • The electrophoretic deposition(EPD) technique with a wide range of novel applications in the processing of advanced ceramic materials and coatings, has recently gained increasing interest both in academic and industrial sector not only because of the high versatility of its use with different materials and their combinations but also because of its cost-effectiveness requiring simple apparatus. Compared to other advanced shaping techniques, the EPD process is very versatile since it can be modified easily for a specific application. For example, deposition can be made on flat, cylinderical or any other shaped substrate with only minor charge in electrode design and positioning[1]. The synthesis of the nano-sized Ce0.2Sm0.8O1.9(SDC)particles prepared by aurea based low temperature hydrothermal process was investigated in this study[2].When we made the SDC nanoparticles, changed the time of synthesis of the SDC. The SDC nanoparticles were characterized with field-emission scanning electron microscope(FESEM), energy dispersive X-ray analysis(EDX), and X-ray diffraction(XRD). And also we researched the results of our investigation on electrophoretic deposition(EPD) of the SDC particles from its suspension in acetone solution onto a non-conducting NiO-SDC substrate. In principle, it is possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of SDC particles on a NiO-SDC substrate was made possible through the use of a adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension[3-4]. Deposition rate was found to increase its increasing deposition time and voltage. After annealing the samples $1400^{\circ}C$, we observed that deposited substrate.

  • PDF

Applications and Preparation of Nanostructured Polymer Films by Using a Porous Alumina Template (다공성 알루미나 템플레이트를 이용한 고분자 나노 구조 필름의 제조 및 응용)

  • Lee, Joon Ho;Choi, Jin Kyu;Ahn, Myung-Su;Park, Eun Joo;Sung, Sang Do;Lee, Han-sub;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.586-592
    • /
    • 2009
  • The preparation of structures with nanosized arrays allows mimicking many different morphologies that exist in nature. In addition, polymer is considered as a material that can be easily applicable to the fabrication of nanostructures and can effectively exhibit nanosize effects since material, synthesis and processing cost is low, and many of polymer structures are well studied. Porous alumina template prepared by anodization of aluminum among nanofabrication methods is the one of promising routes that cost-effectively provides very regularly arrayed nanostructures. In this review, we describe the fabrication of the nanotemplate and template-based polymer nanostructures and their applications.

Preparation of Suspension in La2O3-Gd2O3-ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray (유성구볼밀을 이용한 La2O3-Gd2O3-ZrO2 계 서스펜션준비와 서스펜션 플라즈마용사를 이용한 (La1-xGdx)2Zr2O7 코팅증착과 특성)

  • Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Design of Spinning and Subsequent Drawing Parameters to Improve the Mechanical Properties of PVA Fibers

  • Chae, Dong Wook;Kim, Seung Gyoo;Kim, Byoung Chul
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.125-133
    • /
    • 2016
  • In this study, efforts were made to enhance the mechanical properties of the poly(vinyl alcohol) (PVA) fibers of medium molecular weight(number-average degree of polymerization=1735) varying the ratio in $DMSO/H_2O$ mixed solvent and spinning/drawing conditions. The gel fibers prepared from pure DMSO were opaquely frozen in the coagulating bath of $-20^{\circ}C$. However, transparent gel fibers were formed without freezing for the mixture to contain water less than 80wt%. As the amount of water in the mixture increased the residual solvent in the coagulated gel fibers decreased ranging from 85 to 42wt%. The complex viscosity increased with increasing PVA concentration in 80/20 $DMSO/H_2O$ exhibiting remarkable shear thinning at 18wt%. In the Cole-Cole plot, the 18wt% PVA solutions gave a deviated curve from 12 and 15wt% ones. Thus the optimum PVA concentration for the spinning processing of medium MW PVA solutions in 80/20 $DMSO/H_2O$ was determined to 18wt% with rheological concept. Low degree of drawing during hot drawing process in the dry state was available for high bath draft in the coagulation bath. The most improved mechanical properties were observed by applying the highest possible draw ratio attained by reducing bath draft over multi-step drawing process. In the given bath draft, linear relationship was observed between both tensile strength and modulus and draw ratio showing the inflection points at the draw ratio of 19.5 and 18.0 for tensile strength and modulus, respectively.