Dielectric Properties of $Ta_2O_5-SiO_2$ Thin Films Deposited at Room Temperature by Continuous Composition Spread

상온에서 연속 조성 확산법에 의해 증착된 $Ta_2O_5-SiO_2$ 유전특성

  • Kim, Yun-Hoe (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Jung, Keun (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Yoon, Seok-Jin (Electronic Materials Center, Korea Institute of Science and Technology) ;
  • Song, Jong-Han (Nano Materials Analysis Center, Korea Institute of Science and Technology) ;
  • Park, Kyung-Bong (The Center for Green Materials Technology, Andong University) ;
  • Choi, Ji-Won (Electronic Materials Center, Korea Institute of Science and Technology)
  • 김윤회 (한국과학기술연구원 전자재료센터) ;
  • 정근 (한국과학기술연구원 전자재료센터) ;
  • 윤석진 (한국과학기술연구원 전자재료센터) ;
  • 송종한 (한국과학기술연구원 나노재료분석센터) ;
  • 박경봉 (안동대학교 청정소재기술연구센터) ;
  • 최지원 (한국과학기술연구원 전자재료센터)
  • Received : 2010.03.12
  • Accepted : 2010.06.15
  • Published : 2010.06.30

Abstract

The variations of dielectric properties of $Ta_2O_5-SiO_2$ continuous composition spread thin films prepared by off-axis radio-frequency magnetron sputtering were investigated. The dielectric maps of dielectric constant and loss were plotted via 1500 micron-step measuring. The specific points showing superior dielectric properties of high dielectric constant (k~19.5) and loss (tan${\delta}$<0.05) at 1 MHz were found in area of the distance of 16 mm and 22 mm apart from $SiO_2$ side in $75{\times}25mm^2$ sized Pt/Ti/$SiO_2$/Si(100) substrates.

CCS방법이 적용된 off-axis RF 마그네트론 스퍼터를 이용하여 증착된 $Ta_2O_5-SiO_2$의 유전체 박막에 관하여 연구를 하였다. 1500 ${\mu}m$ 의 간격으로 비유전율 및 유전손실을 측정하여 $Ta_2O_5-SiO_2$에 조성의 변화에 따른 유전특성의 변화를 나타내었다. 1MHz 에서 높은 유전상수(k~19.5) 와 낮은 유전손실(tan${\delta}$<0.05)을 보이는 영역들을 찾았는데, 이는 증착된 기판($75{\times}25mm^2$ sized Pt/Ti/$SiO_2$(100))에서 $SiO_2$/Si 타겟 영역으로부터 각각 16 mm, 22 mm 떨어진 영역에서 찾을 수 있었다.

Keywords

References

  1. 김종희, "나노분산 및 저온 공정에 의한 3-D Integration Ceramic 기술(in Kor.)", 세라미스트, 12(3), 7 (2009).
  2. T. C .May and M. H. Woods, "Alpha-particle-induced Soft Errors in Dynamic Memories", IEEE Trans. Electron. Dev., ED-26, 2 (1979).
  3. K. Paik, J. Hyun, S. Lee and K. Jang, "Epoxy/$BaTiO_3(SrTiO_3)$ Composite Films and Pastes for High Dielectric Constant and Low Tolerance Embedded Capacitors Fabrication in Organic Substrates", Proc. 1st Electronics Systemintegration Technology Conference, Dresden, 794 (2006).
  4. S. Lee, D. Lee, and J. Park, "Fully Embedded 2.4GHz Compact Band Pass Filter into Multi-Layered Organic Packaging Substrate", J. Microelectron. Packag. Soc., 15(1), 39 (2008).
  5. C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic Thin Film Transistors for Large Area Electronics", Adv. Mater., 14(2), 99 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  6. "Radio Frequency and Analog/Mixed-Signal Technologies for Wireless Communication" in International Technology Roadmap for Semiconductors, 2007 Ed., Semiconductor Industry Association (2007).
  7. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature Fabrication of Transparent Flexible Thin-film Transistors Using Amorphous Oxide Semiconductors", Nature, 432, 488 (2004) . https://doi.org/10.1038/nature03090
  8. H. Shinriki, M. Nakata, Y. Nishioka, and K. Mukai, "Leakage Current Reduction and Reliability Improvement of Effective 3 nm-thick CVD TaO Film by Two-step Annealing", Proc. Tech. Dig. Symp., 25, VLSI Tech. (1989).
  9. K. Nomura, H. Ogawa and A. Abe, "Electrical Properties of $Al_2O_3-Ta_2O_5$ Composite Dielectric Thin Films Prepared by RF Reactive Sputtering", J. Electrochem. Soc., 134(4), 922 (1987). https://doi.org/10.1149/1.2100596
  10. "IEEE Standard Testability Method for Embedded Core-based Integrated Circuits" in IEEE Std. 1500-2005, pp.1-117, IEEE, New York (2005).
  11. K. Koyama, T. Sakuma, S. Yamamichi, H. Watanabe, H. Aoki, S. Ohya, Y. Miyasaka and T. Kikkawa, "A Stacked Capacitor with for 256M DRAM", IEDM Technical Digest, 823 (1991).
  12. L. H. Parker and A. F. Tasch, "Ferroelectric Materials for 64Mb and 264mb DRAMS", IEEE Circuits and Devices Magazine, Jan., 17 (1990).
  13. K. Lee, Y. Kim, W. Lee, "Effects of Asymmetric Distribution of Charged Defects on the Hysteresis Curves of Ferroelectric Capacitors", J. Microelectron. Packag. Soc., 12(3), 219 (2005).
  14. C. H. Kim, "Synthesis of ZrTiO4 and Ta2Zr6O17 Films by Composition-Combinatorial Approach through Surface Sol-Gel Method and Their Dielectric Properties", B. Korean Chem. Soc., 28(9), 1463 (2007). https://doi.org/10.5012/bkcs.2007.28.9.1463
  15. R. B. van Dover and L. F. Schneemeyer, "The Codeposited Composition Spread Approach to High-Throughput Discovery/Exploration of Inorganic Materials", Macromol. Rapid Commun., 25(1), 150 (2004). https://doi.org/10.1002/marc.200300213
  16. R. B. V. Dover, L. F. Schneemeyer and R. M. Fleming, "Discovery of a Useful Thin-film Dielectric Using a Composition-spread Approach", Nature, 392, 162 (1998). https://doi.org/10.1038/32381
  17. Y. Liang, G. Dong, Y. Hu, L. Wang and Y. Qiu, "Low-voltage Pentacene Thin-film Transistors with $Ta_2O_5$ Gate Insulators and Their Reversible Light-induced Threshold Voltage Shift", Appl. Phys. Lett., 86, 2101 (2005).
  18. C. Corbella, M. Vives, A. Pinyol, I. Porqueras, C. Person and E. Bertran, "Influence of the Porosity of RF Sputtered $Ta_2O_5$ Thin Films on Their Optical Properties for Electrochromic Applications", Solid State Ionics, 165(1-4), 15 (2003). https://doi.org/10.1016/j.ssi.2003.08.018
  19. N. Novkovski, E. Atanassova and A. Paskaleva, "Stress-induced Leakage Currents of the RF Sputtered $Ta_2O_5$ on N-implanted Silicon", Appl. Surf. Sci., 253(9), 4396 (2007). https://doi.org/10.1016/j.apsusc.2006.09.041
  20. A Paskaleva1, D Spassov and E Atanassova, "Impact of Si Substrate Nitridation on Electrical Characteristics of $Ta_2O_5$ Stack Capacitors", J. Phys. D: Appl. Phys., 40(21), 6709 (2007). https://doi.org/10.1088/0022-3727/40/21/034
  21. A. Yankova, L. D. Thanh and P. Balk, "Effects of Thermal Nitridation on the Trapping Characteristics of $SiO_2$ Films", Solid State Electron., 30(9), 939 (1987). https://doi.org/10.1016/0038-1101(87)90130-4
  22. V. Bhatt and S. Chandra, "Silicon Dioxide Films by RF Sputtering for Microelectronic and MEMS Applications", J. Micromech. Microeng., 17(5), 1066 (2007). https://doi.org/10.1088/0960-1317/17/5/029