Applications and Preparation of Nanostructured Polymer Films by Using a Porous Alumina Template

다공성 알루미나 템플레이트를 이용한 고분자 나노 구조 필름의 제조 및 응용

  • Lee, Joon Ho (Department of Textile Engineering, Inha University) ;
  • Choi, Jin Kyu (Department of Chemical Engineering, Inha University) ;
  • Ahn, Myung-Su (Department of Chemical Engineering, Inha University) ;
  • Park, Eun Joo (Department of Chemical Engineering, Inha University) ;
  • Sung, Sang Do (Department of Chemistry, Inha University) ;
  • Lee, Han-sub (Department of Textile Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemical Engineering, Inha University)
  • Received : 2009.07.23
  • Accepted : 2009.08.04
  • Published : 2009.12.10

Abstract

The preparation of structures with nanosized arrays allows mimicking many different morphologies that exist in nature. In addition, polymer is considered as a material that can be easily applicable to the fabrication of nanostructures and can effectively exhibit nanosize effects since material, synthesis and processing cost is low, and many of polymer structures are well studied. Porous alumina template prepared by anodization of aluminum among nanofabrication methods is the one of promising routes that cost-effectively provides very regularly arrayed nanostructures. In this review, we describe the fabrication of the nanotemplate and template-based polymer nanostructures and their applications.

나노 크기의 배향성을 갖는 구조물의 제작은 자연에 존재하는 여러 가지 형상의 모방을 가능하게 한다. 고분자는 가격이 매우 저렴하며 합성과 가공 그리고 그 구조가 잘 알려져 있는 장점을 갖고 있어 필름(film)의 표면에 이러한 나노 구조물을 제작하고 나노 구조의 특성을 발현하는데 손쉽게 활용할 수 있는 재료이다. 나노 구조물을 제작하는 방법 중 양극산화를 통하여 제작한 다공성 알루미나 템플레이트(porous alumina template)는 매우 규칙적으로 정렬되어 있고 제어하는 공정이 비교적 쉽고 경제적이기 때문에 이를 이용한 연구가 매우 활발하게 진행되고 있다. 본 총설에서는 양극산화 알루미나 템플레이트의 제작과 이를 이용한 나노 구조 고분자 필름의 제작을 설명하고 이러한 나노 구조 필름의 응용범위 및 응용에 필요한 특성에 대하여 기술하였다.

Keywords

References

  1. O. Jessensky, F. Müller, and U. G$\ddot{o}$sele, Appl. Phys. Lett., 72, 1173 (1998) https://doi.org/10.1063/1.121004
  2. H. Masuda, F. Hasegwa, and S. One, J. Electrochem. Soc., 144, L127 (1997) https://doi.org/10.1149/1.1837634
  3. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G$\ddot{o}$sele, Nano Lett., 2, 677 (2002) https://doi.org/10.1021/nl025537k
  4. H. Masuda and K. Fukuda, Science, 268, 1466 (1995) https://doi.org/10.1126/science.268.5216.1466
  5. Y. Lei and L. D. Zhang, J. Mater. Res., 16, 1138 (2001) https://doi.org/10.1557/JMR.2001.0157
  6. N. I. Kovtyukhova, T. E. Mallouk, and T. S. Mayer, Adv. Mater., 15, 780 (2003) https://doi.org/10.1002/adma.200304701
  7. J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, and U. G$\ddot{o}$sele, Chem. Mater., 15, 776 (2003) https://doi.org/10.1021/cm0208758
  8. M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, and U. G$\ddot{o}$sele, Science, 296, 1997 (2002) https://doi.org/10.1126/science.1071210
  9. A. Hung, J. Electrochem. Soc., 132, 1047 (1985) https://doi.org/10.1149/1.2114012
  10. M. Anthamatten, S. A. Letts, K. Day, R. C. Cook, A. P. Gies, T. P. Hamilton, and W. K. Nonidez, J. Polym. Sci. Polym. Chem., 42, 5999 (2004) https://doi.org/10.1002/pola.20446
  11. L. L. Hench and J. K. West, Chem. Rev., 90, 33 (1990) https://doi.org/10.1021/cr00099a003
  12. V. P. Parkhutik and V. I. Shershulsky, J. phys. D Appl. Phys., 25, 1258 (1992) https://doi.org/10.1088/0022-3727/25/8/017
  13. P. G. de Gennes, Rev. Mod. Phys., 57, 827 (1985) https://doi.org/10.1103/RevModPhys.57.827
  14. M. G. Bernadiner, Transport Porous Med., 30, 251 (1998) https://doi.org/10.1023/A:1006571720867
  15. M. Zhang, P. Dobriyal, J. T. Chen, and T. P. Russell, Nano Lett., 6, 1075 (2006) https://doi.org/10.1021/nl060407n
  16. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. B, 273, 661 (2006) https://doi.org/10.1098/rspb.2005.3369
  17. C. G. Bernhard and W. H. Miller, Acta Physiol. Scand., 56, 385 (1962) https://doi.org/10.1111/j.1748-1716.1962.tb02515.x
  18. W. H. Miller, In Handbook of sensory physiology, ed. H. Autrum, VII/6A, 69, Springer, Berlin (1979)
  19. S. Exner, The physiology of the compound eyes of insects and crustaceans, ed. R. C. Hardie, Springer, Berlin (1989)
  20. A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, Zool. Sci., 14, 737 (1997) https://doi.org/10.2108/zsj.14.737
  21. G. Palasantzas, J. Th. M. De Hosson, K. F. L. Michielsen, and D. G. Stavenga, In Handbook of nanostructured biomaterials and their applications in biotechnology, ed. H. S. Nalwa, 1, 273, American Scientific Publishers, Stevenson Ranch (2005)
  22. http://www.prescription-lenses.com/anti-reflection.html
  23. P. F. A. Maderson, Nature, 203, 780 (1964) https://doi.org/10.1038/203780a0
  24. A. P. A. Russell, J. Zool. Lond., 176, 437 (1975) https://doi.org/10.1111/j.1469-7998.1975.tb03215.x
  25. M. Cartmill, In Functional Vertebrate Morphology, ed. M. Hildebrandt, D. M. Bramble, K. F. Liem and D. B. Wake, 73, Harvard Univ. Press, Massachusetts (1985)
  26. U. Hiller, Form. Funct., 4, 240 (1971)
  27. U. Hiller, Z. Morphol. Tiere., 62, 307 (1969) https://doi.org/10.1007/BF00401561
  28. R. Ruibal and V. Ernst, J. Morphol., 117, 271 (1965) https://doi.org/10.1002/jmor.1051170302
  29. A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, and S. YU. Shapoval, Nature Materials, 2, 461 (2003) https://doi.org/10.1038/nmat917
  30. G. Lu, W. Hong, L. Tong, H. Bai, Y. Wei, and G. Shi, ACS Nano, 2, 2342 (2008) https://doi.org/10.1021/nn800443m
  31. G. Shi, S. Jin, G. Xue, and C. Li, Science, 267, 994 (1995) https://doi.org/10.1126/science.267.5200.994
  32. A. Campo and A. E. Arzt, Chem. Rev., 108, 911 (2008) https://doi.org/10.1021/cr050018y
  33. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir, 15, 4321 (1999) https://doi.org/10.1021/la981727s
  34. C. Neinhuis and W. Barthlott, Ann. Bot., 79, 667 (1997) https://doi.org/10.1006/anbo.1997.0400
  35. W. Barthlott and C. Neinhuis, Planta, 202, 1 (1997) https://doi.org/10.1007/s004250050096
  36. L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Adv. Mater., 14, 1857 (2002) https://doi.org/10.1002/adma.200290020
  37. J. Zhai, H. J. Li, Y. S. Li, S. H. Li, and L. Jiang, Physics, 31, 483 (2002)
  38. A. Nakajima, K. Hashimoto, and T. Watanabe, Monatsh. Chem.,132, 31 (2001) https://doi.org/10.1007/s007060170142
  39. G. McHale, N. J. Shirtcliffe, and M. I. Newton, Analyst, 129, 284 (2004) https://doi.org/10.1039/b400567h
  40. T. Sun, L. Feng, X. Gao, and L. Jiang, Acc. Chem. Res., 38, 644 (2005) https://doi.org/10.1021/ar040224c
  41. M. Callies and D. Quere, Soft Mat., 1, 55 (2005) https://doi.org/10.1039/b501657f
  42. J. Xu, M. Li, Y. Zhao, and Q. Lu, Colloid. Surfaces. A, 302, 136 (2007) https://doi.org/10.1016/j.colsurfa.2007.02.030
  43. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1944) https://doi.org/10.1039/tf9444000546
  44. Z. L. Wang and J. Song. Science, 312, 242 (2006) https://doi.org/10.1126/science.1124005
  45. M. S. Majdoub, P. Sharma, and T. $\c{c}$agin, Phys. Rev. B, 78, 121407 (2008) https://doi.org/10.1103/PhysRevB.78.121407
  46. K. J. Kim and G. B. Kim, polymer, 38, 4881 (1997) https://doi.org/10.1016/S0032-3861(96)00018-3
  47. T. G. Yildirim, Y. Heouzer, G. Hizal, and Y. Yagci, Polymer, 40, 3885 (1999) https://doi.org/10.1016/S0032-3861(98)00633-8
  48. X. Y. Jin, K. J. Kim, and H. S. Lee, Polymer, 46, 12410 (2005) https://doi.org/10.1016/j.polymer.2005.10.066
  49. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995) https://doi.org/10.1126/science.270.5243.1789
  50. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater., 18, 572 (2006) https://doi.org/10.1002/adma.200501825