• 제목/요약/키워드: Nano-processing

검색결과 553건 처리시간 0.032초

Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics

  • Fan, Huiqing;Peng, Biaolin;Zhang, Qi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권1호
    • /
    • pp.1-4
    • /
    • 2015
  • (111)-oriented and random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/$TiO_x$/$SiO_2$/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (${\eta}=75%$, E = 560 kV/cm) and figure-of-merit (FOM ~ 236) at room temperature was obtained in (111)-oriented thin film. Meanwhile, giant electrocaloric effect (ECE) (${\Delta}T=45.3K$ and ${\Delta}S=46.9JK^{-1}kg^{-1}$ at $598kVcm^{-1}$) at room temperature (290 K), rather than at its Curie temperature (408 K), was observed in random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) thin film, which makes it a promising material for the application to cooling systems near room temperature. The giant ECE as well as high dielectric tunability are attributed to the coexistence of AFE and FE phases and field-induced nano-scaled AFE to FE phase transition.

다공성 SiO2/ITO 나노박막의 전기적 특성 (Electrical Properties of Porous SiO2/ITO Nano Films)

  • 신용욱;김상우
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.94-99
    • /
    • 2002
  • The electrical properties of porous $SiO_2/ITO$ nano thin film were studied by complex impedance and conductive mechanisms were analyzed. According to the results of complex impedance, the activation energy of $SiO_2/ITO$ and $Zn-SiO_2/ITO$ were 0.309 eV, 0.077 eV in below $450^{\circ}C$ and 0.147 eV in over $450^{\circ}C$, respectively. In case of $SiO_2/ ITO$, slightly direct tunneling occurred at room temperature. The contribution for conduction was very tiny because of high barrier of silica. However, the conductivity abruptly increased in over $300^{\circ}C$ by Thermally assisted tunneling. In case of $Zn-SiO_2/ITO$, high conductivity in 1.26 ${\Omega}^{ -1}{cdot}cm^{-1}$ at room temperature appeared by space charge conduction or Frenkel-poole emission that Zn ions play a role as localized electron states.

서스펜션 진공 플라즈마 용사법을 통한 YSZ 코팅의 형성 (Formation of YSZ Coatings Deposited by Suspension Vacuum Plasma Spraying)

  • 유연우;변응선
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.460-464
    • /
    • 2017
  • As increasing thermal efficiency of the gas turbine, the performance improvement of thermal barrier coatings is also becoming important. Ytrria stabilized zirconia(YSZ) is the most popular materials for ceramic top coating because of its low thermal conductivity. In order to enhance the performance of thermal barrier coatings for hot sections in the gas turbine, suspension plasma spraying was developed in order to feed nano-sized powders. YSZ coatings formed by suspension plasma spraying showed better performance than YSZ coatings due to its exclusive microstructure. In this research, two YSZ coatings were deposited by suspension vacuum plasma spraying at 400 mbar and 250 mbar. Microstructures of YSZ coatings were analyzed by scanning electron image(SEM) on each spraying conditions, respectively. Crystalline structure transformation was not detected by X-ray diffraction. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings were measured by laser flash analysis. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings containing horizontally oriented nano-sized pores and vertical cracks showed $0.6-1.0W/m{\cdot}K$, similar to thermal conductivity of YSZ coatings formed by atmospheric plasma spraying.

Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures

  • Zou, C.W.;Gao, W.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2010
  • This is an overview paper reporting our most recent work on processing and microstructure of nano-structured oxides and their photoluminescence and photo-catalysis properties. Zinc oxide and related transition metal oxides such as vanadium pentoxide and titanium dioxide were produced by a combination of magnetron sputtering, hydrothermal growth and atmosphere controlled heat treatment. Special morphology and microstructure were created including nanorods arrays, core-brushes, nano-lollipops and multilayers with very large surface area. These structures showed special properties such as much enhanced photoluminescence and chemical reactivity. The photo-catalytic properties have also been promoted significantly. It is believed that two factors contributed to the high reactivity: the large surface area and the interaction between different oxides. The transition metal oxides with different band gaps have much enhanced photoluminescence under laser stimulation. Use of these complex oxide structures as electrodes can also improve the energy conversion efficiency of solar cells. The mixed oxide complex may provide a promising way to high-efficiency photo emitting materials and photo-catalysts.

마이크로 PIM용 Fe 마이크로-나노 혼합분말 피드스톡의 다이성형 및 소결거동 (Die Compaction and Sintering Behavior of Fe Micro-nano-powder Feedstock for Micro-PIM)

  • 유우경;최준필;이재성
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2011
  • The present investigation was performed on the die compaction and sintering behavior of Fe micro-nano mixed powder with a mixed binder for powder injection molding. Warm die compaction of the feedstock for simulation of the static injection molding process was conducted using a cylindrical mold of 10 mm diameter at $100^{\circ}C$ under 4MPa. The die compaction of the micro-nanopowder feedstock underwent a uniform molding behavior showing a homogeneous distribution of nanopowders among the micropowders without porosity and distortion. After debinding, the powder compact maintained a uniform structure without crack and distortion, leading to a high green density of 64.2% corresponding to the initial powder loading of 65%. The sintering experiment showed that the micro-nanopowder compact underwent a near full and isotropic densification process during sintering. It was observed that the nanopowders effectively suppressed the growth of micropowder grains during densification process. Conclusively, the use of nanopowder for PIM feedstock might provide a new concept for processing a full density PIM parts with fine microstructure.

NASA CFS에 기반한 초소형 위성용 비행소프트웨어 개발에 관한 연구 (A Study on developing Flight Software for Nano-satellite based on NASA CFS)

  • 최원섭;김진형;김해동
    • 한국항공우주학회지
    • /
    • 제44권11호
    • /
    • pp.997-1005
    • /
    • 2016
  • 비행소프트웨어는 지상국으로부터의 명령을 처리하고 위성의 제어, 미션 데이터 처리 등 위성운영에 있어서 핵심적인 역할을 담당한다. 비행소프트웨어는 그 특성상 신뢰성의 확보가 가장 중요하고 이를 위해서는 수많은 검증과 테스트를 필요로 한다. 이는 개발 비용과 기간 증가의 주요 요인이 된다. 이에 NASA에서는 모듈화 및 재사용성이 강조되는 비행소프트웨어 플랫폼을 개발하여 위성 프로젝트에 적용을 하였는데 그 결과물이 CFS(Core Flight System)이다. 본 연구에서는 NASA CFS 에 기반하여 초소형위성용 비행소프트웨어의 개발을 진행하였다. CFS에서 제공되는 핵심적인 서비스 및 기능을 테스트하였고 이를 적용하여 소프트웨어 설계 및 구현을 진행하였다.

Platinum Nano-Dispersion via In Situ Processing - Preparation and catalytic Property of Porous $CaZrO_3/MgO/Pt$ Nanocomposite

  • Yoshikazu;Hwang, Hae-Jin;Naoki Kondo;Tatsuki Ohji
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.163-167
    • /
    • 2001
  • A bulk porous $CaZrO_3/MgO$ composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of $PtO_2$. A mixture of $CaMg(CO_3)_2$(dolomite), $ZrO_2$, $PtO_2$ and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at $1100^{\circ}C$ for 2 h. The porous $CaZrO_3/MgO/Pt$ composite ($CaZrO_3/MgO$ : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous $CaZrO_3/MgO$ composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by $C_2H_4$) of the $CaZrO_3/MgO/Pt$ composite were investigated up to $900^{\circ}C$. In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by $C_2H_4$, respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and $de-NO_x$ in one component.

  • PDF

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • 전민환;강세구;박종윤;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

실리카충전 스티렌-부타디엔 고무컴파운드의 균열성장 및 마모특성: 공정오일 종류의 영향 (Crack Growth and Wear Properties of Silica-reinforced Styrene-butadiene Rubber Compounds: Effect of Processing Oil Type)

  • 강성락;이종영;고재영;고영훈;강신영;나창운
    • Elastomers and Composites
    • /
    • 제44권4호
    • /
    • pp.401-407
    • /
    • 2009
  • 용액중합 스티렌-부타디엔 고무 컴파운드 가교체의 균열저항성 및 마모특성에 미치는 공정오일의 영향을 조사하기 위해 방향족 고리화합물(PCA) 성분을 다량 함유하고 있는 방향족 오일과 저 PCA 오일을 선택하였다. 인장강도 및 인열강도 결과에 의하면 방향족 오일함유 컴파운드가 저 PCA 오일함유 컴파운드에 비해 우수한 물성을 나타내었다. 또한 방향족 오일함유 컴파운드가 균열저항성이 월등히 우수하였고, 특히 인열에너지가 낮은 범위에서 더 우수한 결과를 나타내었다. 마모저항특성은 마찰에너지가 낮은 범위에서는 방향족 오일함유 컴파운드가 우수한 결과를 나타낸 반면, 높은 마찰에너지 범위에서는 저 PCA 오일 함유 컴파운드가 오히려 높은 저항성을 나타내었다.

분무열분해공정에 의한 니켈 페라이트 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Ni-ferrite Powder by Spray Pyrolysis Process)

  • 유재근;서상기;박시현;한정수
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.202-209
    • /
    • 2004
  • In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80$0^{\circ}C$ to 110$0^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 $kg/cm^2, the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 $kg/cm^2 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.