Platinum Nano-Dispersion via In Situ Processing - Preparation and catalytic Property of Porous $CaZrO_3/MgO/Pt$ Nanocomposite

  • Yoshikazu (Suzuki Synergy Materials Research Center, national Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Hwang, Hae-Jin (Suzuki Synergy Materials Research Center, national Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Naoki Kondo (Suzuki Synergy Materials Research Center, national Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Tatsuki Ohji (Suzuki Synergy Materials Research Center, national Institute of Advanced Industrial Science and Technology(AIST))
  • Published : 2001.09.01

Abstract

A bulk porous $CaZrO_3/MgO$ composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of $PtO_2$. A mixture of $CaMg(CO_3)_2$(dolomite), $ZrO_2$, $PtO_2$ and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at $1100^{\circ}C$ for 2 h. The porous $CaZrO_3/MgO/Pt$ composite ($CaZrO_3/MgO$ : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous $CaZrO_3/MgO$ composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by $C_2H_4$) of the $CaZrO_3/MgO/Pt$ composite were investigated up to $900^{\circ}C$. In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by $C_2H_4$, respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and $de-NO_x$ in one component.

Keywords

References

  1. J. Aerossol Sci. v.17 M.Kulmala;V.Riihiluoma;T.Raunemaa
  2. Biomass v.5 F.Vyarawalla;P.P.Parikh;H.C.Dak;B.C.Jain
  3. J. Eng. Gas Turbines Power v.118 R.R.Judkins;D.P.Stinton;R.G.Smith;E.M.Fischer;J.H.Eaton;B.L.Weaver;J.L.Kahnke;D.J.Pysher
  4. Powder Technol v.91 Y.M.Jo;R.B.Hutchison;J.A.Raper
  5. Ceram. International v.25 L.Montanaro
  6. J. Eur. Ceram. Soc. v.21 H.J.Hwang;M.Awano
  7. J. Phys. IV, Colloq. v.7 T.Tanaka;S.Yoshida;R.Kanai;T.Shishido;H.Hattori;Y.Takata;N.Kosugi
  8. Ceramics Japan v.29 I.Hattori
  9. J. Am. Ceram. Soc. v.83 Y.Suzuki;P.E.D.Morgan;T.Ohji
  10. J. Ceram. Soc. Jpn. v.109 Y.Suzuki;M.Awano;N.Kondo;T.Ohji
  11. J. Am. Ceram. Soc. Y.Suzuki;H.J.Hwang;N.Kondo;T.Ohji
  12. J. Am. Ceram. Soc. v.80 Y.Suzuki;P.E.D.Morgan;T.Sekino;K.Niihara
  13. Powder Diffraction v.13 Y.Suzuki;P.E.D.Morgan;K.Niihara
  14. Encyclopedia of Physics and Chemistry (Rikagaku-Jiten)(4th Edition.) R.Kubo;S.Nagakura;H.Iguchi;H.Ezawa(eds.)
  15. J. Less-Common Metals. v.16 O.Muller;R.Roy
  16. J. Molecular Catal. A-Chem. v.112 C.P.Hwang;C.T.Yeh
  17. HSC Chemistry(ver 4.0) Outokumpu Research Oy