• Title/Summary/Keyword: Nano-morphology

Search Result 681, Processing Time 0.037 seconds

Micro/nano adhesion and friction properties of mixed self-assembled monolayer (혼합 Self-assembled monolayer의 마이크로/나노 응착 및 마찰 특성)

  • Oh Hyun-Jin;Yoon Eui-Sung;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.56-63
    • /
    • 2003
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water wetting angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that wetting angles of mixed SAMs showed the similar value of pure SAMs. The coating surface morphology was increased as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

  • PDF

Fabrication of ZnO Nanostructures with Various Growth Conditions by Vapor Phase Transport

  • Kim, So-A-Ram;Nam, Gi-Woong;Kim, Min-Su;Yim, Kwang-Gug;Kim, Do-Yeob; Leem, Jae-Youn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.250-250
    • /
    • 2011
  • Zinc oxide (ZnO) structures have great potential in many applications. Currently, the most commonly used method to grow ZnO nanostructres are the vapor transport method (VPT). The morphology of the ZnO structures largely related to the growth conditions, including growth temperature, distance between the substrate and source, and gas ambient. Previously ZnO nanosturecutres with high crystallinity were obtained at the growth temperature of 800$^{\circ}C$, in the argon and oxygen gas ambient. In this study, we report the properties of the ZnO nanostructures, which were synthesized on Au-catalyzed Si substrate by VPT, using a mixture of ZnO and graphite powders as source material under the different condition, including gas ratio of argon/oxygen and distance between substrate and source at the growth temperature of 800$^{\circ}C$. The structural and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL).

  • PDF

Single Wall Carbon Nanotube Films Produced by Arc Discharge (아크 방전법으로 성장된 대면적 단일벽 탄소나노튜브 필름)

  • Kang, Young-Jin;Oh, Dong-Hoon;Song, Hye-Jin;Jung, Jin-Yeun;Jung, Hyuk;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.253-258
    • /
    • 2008
  • A simple method to deposit carbon nanotube films uniformly on large area substrates using an arc discharge method is reported in this paper. The arc discharge method was modified to deposit carbon nanotube films in situ on the substrates. The substrates were scanned several times over the arcing point for a uniform film thickness. Deposition was carried out under variable dc bias conditions at 600 torr of $H_2$ gas. The thickness uniformity of the single-wall carbon nanotube films as characterized by a four-point probe was within 30% deviation. The morphology and crystal quality of the single-wall carbon nanotube film were also characterized by field emission scanning electron microscopy and Raman spectroscopy.

New Design of Li[Ni0.8Co0.15Al0.05]O2 Nano-bush Structure as Cathode Material through Electrospinning

  • Nam, Yun-Chae;Lee, Seon-Jin;Kim, Hae-In;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, new morphology of NCA cathode material for lithium ion batteries was obtained through the electrospinning method. The prepared NCA nanofibers formed a nano-bush structure, and the primary particles were formed on the surface of the nanofibers. The embossing primary particles increased the surface area thus increasing the reactivity of lithium ions. The nano-bush structure could shorten the Li+ diffusion path and improve the Li+ diffusion coefficient. Scanning electron microscopy (SEM) revealed that the synthesized material consisted of nanofibers. The surface area of the nanofibers increased by primary particles was measured using atomic force microscopy (AFM). X-ray diffraction (XRD) analysis was carried out to determine the structure of the NCA nanofibers.

Surface Characteristics and Biocompatibility of Hydroxyapatite Deposited Ti alloys by Electrochemical Deposition

  • Lee, Kang;Choe, Han Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.141-141
    • /
    • 2015
  • In this study, a series of hydroxyaptite (HAp) are produced on Ti dental implant using electrochemical deposition. Based on the preliminary analysis of the coating structure, composition and morphology. In vitro studies were performed with MC3T3-E1 cell to investigate the effect of biological change on different surface conditions.

  • PDF

Design of flux pinning property in REBCO coated conductors with artificial pinning centers

  • Matsushita, Teruo;Kiuchi, Masaru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • The improvement of critical current properties of $REBa_2Cu_3O_{7-x}$ (REBCO) coated conductors by introducing artificial pinning centers (APCs) is examined with respect to the field-angle anisotropy, high-field performance and relaxation property with time. Nano-rods along the c-axis introduced by PLD method and isotropic nano-particles introduced by TFA-MOD method are treated. The theoretical analysis is also shown to understand the effect of APCs quantitatively. The effects of superconducting layer thickness that influences the high-field performance and relaxation property are also discussed. It is shown that the upper critical field, which is another important factor to determine the high-field property, can be improved by introduction of APCs through electron scattering at interfaces with the superconducting matrix. The optimum critical current property can be obtained by properly designing the morphology and number density of APCs and the superconducting layer thickness.

Organic Thin-Film Transistors with Screen Printed Silver Source/Drain Electrodes

  • Kim, Sam-Soo;Kim, Min-Soo;Choi, Gyu-Seok;Kim, Heon-Gon;Kim, Yong-Bae;Lee, Dong-Gu;Roh, Jae-Seong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1305-1307
    • /
    • 2007
  • We show that the electrical properties of organic thinfilm transistors(OTFTs) can be enhanced by controlling the morphology of interface between screen printed electrodes and gate dielectrics. Modified surface of the insulator layer($SiO_2$) affect on the interface energy of electrode on $SiO_2$ layer. Contact angle measurement and FT-IR spectrum shows that the interface is properly modified. OTFTs device with high efficiency has been realized through modification of interface layer.

  • PDF

Film Coating and Micro - Pattering Process of Nano-particle Conductive Ink System by Using ESD Method

  • Yang, Jong-Won;Jo, Sang-Hyeon;Sin, Na-Ri;Kim, Jin-Yeol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.238.1-238.1
    • /
    • 2011
  • 본 연구에서는 non-contact deposition method의 일환인 ESD (electroctatic deposition)의 박막공정을 이용하여 Conductive layer 위에 Gold nanoparticles 및 Silver nanoparticles 등 organic/inorganic nano particle conductive ink system의 단분산 2D 박막을 제조를 연구하였다. ESD head를 통해 여러가지 organic / inorganic nano particle conductive ink system을 Deposition하였으며 분산도가 높고 균일한 단분산의 2차원 박막 구조를 얻을 수 있었으며, 전도성 PEDOT과의 Hybridization을 통해 균일상의 표면 Morphology를 갖는 고 전도성 투명 필름을 제작하였다. ESD technique를 이용하는 박막공정 기술은 나노입자 및 나노구조물의 박막화 패턴화를 포함하는 새로운 Deposition 기술로써 이를 응용하여 금속 나노입자의 2차원의 패턴화된 박막 구현을 통해 유기반도체 및 전자소자에의 응용성을 증거할 수 있었다.

  • PDF

Trend of Ceramic Nano Pigments (세라믹 나노 안료의 동향)

  • Yu, Ri;Kim, YooJin
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.256-268
    • /
    • 2019
  • Ceramic nano pigments have attracted much interest owing to recent demand for nontoxic, heavy metal-free pigments. In general, ceramic pigments must possess thermal stability at high temperature, however nanosized powder easily undergoes aggregation at high temperature, and its color turns. serveral groups have focused on to minimize agglomeration and oxidation, a core-shell structure with a silica coating is suggested. In this review, we introduce the reported the trend of nano-ceramic powders and we summarized method improve color and physical properties throuth morphology control and ceramic coating technology.