DOI QR코드

DOI QR Code

New Design of Li[Ni0.8Co0.15Al0.05]O2 Nano-bush Structure as Cathode Material through Electrospinning

  • Nam, Yun-Chae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation) ;
  • Lee, Seon-Jin (Department of Nano-Polymer Science & Engineering Korea National University of Transportation) ;
  • Kim, Hae-In (Department of Nano-Polymer Science & Engineering Korea National University of Transportation) ;
  • Son, Jong-Tae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
  • Received : 2020.09.01
  • Accepted : 2021.02.06
  • Published : 2021.02.28

Abstract

In this study, new morphology of NCA cathode material for lithium ion batteries was obtained through the electrospinning method. The prepared NCA nanofibers formed a nano-bush structure, and the primary particles were formed on the surface of the nanofibers. The embossing primary particles increased the surface area thus increasing the reactivity of lithium ions. The nano-bush structure could shorten the Li+ diffusion path and improve the Li+ diffusion coefficient. Scanning electron microscopy (SEM) revealed that the synthesized material consisted of nanofibers. The surface area of the nanofibers increased by primary particles was measured using atomic force microscopy (AFM). X-ray diffraction (XRD) analysis was carried out to determine the structure of the NCA nanofibers.

Keywords

References

  1. Y. Tang, Y. Zhang, W. Li, B. Ma, and X. Chen, Chem. Soc. Rev. 44, 5926 (2015). https://doi.org/10.1039/c4cs00442f
  2. S. Xia, J.-J. Liu,., F. Li, F. Cheng, X. Li, C. Sun, and H. Guo, Ceram Int 44(8), 9294 (2018). https://doi.org/10.1016/j.ceramint.2018.02.141
  3. L. Qiu, W. Xiang, W. Tian, C-L. Xu, Y-C., Li, Z. G. Wu, and X. D. Guo, Nano Energy, 63, 103818 (2019). https://doi.org/10.1016/j.nanoen.2019.06.014
  4. W. Liu, P. Oh, X. Liu, M. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Chem. Int. Ed. 54, 4440 (2015). https://doi.org/10.1002/anie.201409262
  5. P. He, H. Yu, D. Lia, and H. Zhou, J. Mater. Chem. 22, 3680 (2012). https://doi.org/10.1039/c2jm14305d
  6. Y. Chen, P. Li, S. Zhao, Y. Zhuang, S. Zhao, and Q. Zhou, RSC Adv. 7, 29233 (2017). https://doi.org/10.1039/C7RA04206J
  7. W. Chen, Y. Li, D. Yang, X. Feng, X. Guan, and L. Mi, Electrochim. Acta 190, 932 (2016). https://doi.org/10.1016/j.electacta.2016.01.024
  8. S.H. Ju, H.C. Jang, and Y.C. Kang, Electrochim. Acta 52, 7286 (2007). https://doi.org/10.1016/j.electacta.2007.05.064
  9. C.J. Han, J.H. Yoon, W.I. Cho and H. Jang, J. Power Sources. 136, 132-138. (2004). https://doi.org/10.1016/j.jpowsour.2004.05.006
  10. S.B. Majumder, S. Nieto and R.S. Katiyar, J. Power Sources. 154, 262-267 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.186
  11. H. Ouyang, X. Li, Z. Wang, H. Guo, W. Peng and Z. He, Funct. Mater. Lett., 11 1850083 (2018). https://doi.org/10.1142/s1793604718500832
  12. M. Liang, D. Song, H. Zhang, X. Shi, Q. Wang, and L. Zhang, ACS Appl. Mater. Interface, 9 38567-38574 (2017). https://doi.org/10.1021/acsami.7b12306
  13. H. Xie, K. Du, G. Hu, J. Duan, Z. Peng, and Z. Zhang, J. Mater. Chem. A, 3 20236 (2015). https://doi.org/10.1039/C5TA05266A
  14. L. Zhang, Z. Zhao, X. Li, H. Fang, L. Wang, Y. Song, and X. Jia, Mater. Res. Express, 7, 015526 (2020). https://doi.org/10.1088/2053-1591/ab67fb
  15. J. J. Bae, J. W. Shin, S. J. Lee, S. J. Kim, T. W. Hong, and J. T. Son, J. Nanosci. Nanotechnol. 20(1), 338 (2020). https://doi.org/10.1166/jnn.2020.17296
  16. Cai, L., Liu, Z., An, K. and Liang, C., Journal of The Electrochemical Society, 159(7), 924-928. (2012).
  17. Stoyanova, R., Solid State Ionics, 128(1-4), 1-10. (2000). https://doi.org/10.1016/S0167-2738(99)00334-3
  18. R. Chen, H. Zhang, J. Xie, Y. Lin, J. Yu, and. L. Chen, Chem. Electro. Chem, 5(21), 3176-3182, (2018).