• Title/Summary/Keyword: Nano-morphology

Search Result 681, Processing Time 0.026 seconds

Fabrication and characterization of the nano- and micro-particles applied dry adhesives (나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석)

  • Yu, Min Ji;Vu, Minh Canh;Han, Sukjin;Park, Jae Hong;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, the micro- and nano-particles were used and their shapes were transferred into the polydimethylsiloxane (PDMS) film to fabricate the dry adhesives and their properties were investigated. The Cu nanoparticles of the sizes of 20 nm, 40 nm and 70 nm and the polymethylmethacrylate (PMMA) beads of the size of $5{\mu}m$ were used to transfer their images and the resultant properties of the dry adhesives were compared. The effects of particle size and materials on the mechanical property, tensile adhesion strength, light transmittance, surface morphology, water contact angle were studied. The dry adhesives obtained from the transfer process of Cu nanoparticles with the size of 20 nm resulted in the enhancement of tensile adhesion strength more than 300% compared to that of the bare PDMS. The formation of nanostructure of large surface area on the surface of the PDMS film by the Cu nanoparticles may responsible for the improvement. This study suggests that the use of nanoparticles during the fabrication of PDMS dry adhesives is easy and effective and could be applied to the fabrication of the medical patch.

A Comparative Study on Synthesis and Characteristics of LiDAR-detectable Black Hollow-Structured Materials Using Various Reduction Methods (다양한 환원법을 활용한 라이다 인지형 검은색 중공구조 물질의 제조 및 특성 비교 연구)

  • Dahee Kang;Minki Sa;Jiwon Kim;Suk Jekal;Jisu Lim;Gyu-Sik Park;Yoonho Ra;Shin Hyuk Kim
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.56-62
    • /
    • 2024
  • In this study, LiDAR-detectable black hollow-structured materials are synthesized using different reducing agents to evaluate their applicability to LiDAR sensor. Initially, white SiO2/TiO2 core/shell (WST) materials are fabricated via a sol-gel method, followed by a reduction using ascorbic acid (AA) and sodium borohydride (SB). After the reduction, subsequent etching of the SiO2 core leads to the formation of two different black hollow-structured materials (AA-BHT and SB-BHT). The lightness (L*) and near-infrared (NIR) reflectance (R%) of AA-BHT are measured as ca. 19.1 and 34.5 R%, and SB-BHT shows values of ca. 11.5 and 31.8 R%, respectively. While AA-BHT exhibits higher NIR reflectance compared to SB-BHT, it displays slightly lower blackness. Compared with core/shell structured materials, improved NIR reflectance of both AA-BHT and SB-BHT is attributed to the morphology of hollow- structured materials, which increase light reflection at the interface between air and black TiO2 according to the Fresnel's reflection principle. Consequently, both AA-BHT and SB-BHT are effectively detected by the commercially available LiDAR sensors, validating their suitability as black materials for autonomous vehicle and environment.

Study on Nucleation and Evolution Process of Ge Nano-islands on Si(001) Using Atomic Force Microscopy (AFM을 이용한 Si (001) 표면에 Ge 나노점의 형성과 성장과정에 관한 연구)

  • Park, J.S.;Lee, S.H.;Choia, M.S.;Song, D.S.;Leec, S.S.;Kwak, D.W.;Kim, D.H.;Yang, W.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.226-233
    • /
    • 2008
  • The nucleation and evolution process of Ge nano-islands on Si(001) surfaces grown by chemical vapor deposition have been explored using atomic force microscopy (AFM). The Ge nano-islands are grown by exposing the substrates to a mixture of gasses GeH4 and H2 at pressure of 0.1-0.5Torr and temperatures of $600-650^{\circ}C$. The effect of growth conditions such as temperature, Ge thickness, annealing time on the shape, size, number density, and surface distribution was investigated. For Ge deposition greater than ${\sim}5$ monolayer (ML) with a growth rate of ${\sim}0.1ML/sec$ at $600^{\circ}C$, we observed island nucleation on the surface indicating the transition from strained layer to island structure. Further deposition of Ge led to shape transition from initial pyramid and hut to dome and superdome structure. The lateral average size of the islands increased from ${\sim}20nm$ to ${\sim}310nm$ while the number density decreased from $4{\times}10^{18}$ to $5{\times}10^8cm^{-2}$ during the shape transition process. In contrast, for the samples grown at a relatively higher temperature of $650^{\circ}C$ the morphology of the islands showed that the dome shape is dominant over the pyramid shape. The further deposition of Ge led to transition from the dome to the superdome shape. The evolution of shape, size, and surface distribution is related to energy minimization of the islands and surface diffusion of Ge adatoms. In particular, we found that the initially nucleated islands did not grow through long-range interaction between whole islands on the surface but via local interaction between the neighbor islands by investigation of the inter-islands distance.

Investigation of Structural and Optical Properties of III-Nitride LED grown on Patterned Substrate by MOCVD (Patterned substrate을 이용하여 MOCVD법으로 성장된 고효율 질화물 반도체의 광특성 및 구조 분석)

  • Kim, Sun-Woon;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.626-631
    • /
    • 2005
  • GaN-related compound semiconductors were grown on the corrugated interface substrate using a metalorganic chemical vapor deposition system to increase the optical power of white LEDs. The patterning of substrate for enhancing the extraction efficiency was processed using an inductively coupled plasma reactive ion etching system and the surface morphology of the etched sapphire wafer and that of the non-etched surface were investigated using an atomic force microscope. The structural and optical properties of GaN grown on the corrugated interface substrate were characterized by a high-resolution x-ray diffraction, transmission electron microscopy, atomic force microscope and photoluminescence. The roughness of the etched sapphire wafer was higher than that of the non-etched one. The surface of III-nitride films grown on the hemispherically patterned wafer showed the nano-sized pin-holes that were not grown partially. In this case, the leakage current of the LED chip at the reverse bias was abruptly increased. The reason is that the hemispherically patterned region doesn't have (0001) plane that is favor for GaN growth. The lateral growth of the GaN layer grown on (0001) plane located in between the patterns was enhanced by raising the growth temperature ana lowering the reactor pressure resulting in the smooth surface over the patterned region. The crystal quality of GaN on the patterned substrate was also similar with that of GaN on the conventional substrate and no defect was detected in the interface. The optical power of the LED on the patterned substrate was $14\%$ higher than that on the conventional substrate due to the increased extraction efficiency.

A Study on Magnetic Properties of BaFe12O_19 Fabricated by Self-assembly Method (자기 조립법을 이용한 BaFe12O_19의 제조 및 자성 특성에 대한 연구)

  • Choi, Moon-Hee;Yu, Ji-Hun;Kim, Dong-Hwan;Lee, Hye-Mum;Kim, Su-Min;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.410-415
    • /
    • 2009
  • Hexagonal barium ferrite ($BaFe_{12}O_{19}$) nano-particles have been successfully synthesised using selfassembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. $BaFe_{12}O_{19}$ powders were synthesized with addition Fe ions to Ba-DEA complex and then heat treated at temperature range of 800-1000${\circ}C$. The molar ratio of Ba/DEA and heat-treatment temperature significantly affected the magnetic properties and morphology of $BaFe_{12}O_{19}$ powders. $BaFe_{12}O_{19}$ powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at 1000${\circ}C$ for 1 hour showed the coercive forces (iHc) of 4.84 kOe with average crystal size of about 200 nm.

Chemical Evaluation of Corrosion Resistance for Stainless-Steel Plate Wet-Coated by Alumina-Fluoro Composite Coatings (알루미나-불소 복합 코팅제로 습식코팅된 스텐레스 강판의 화학 내식성 평가)

  • Jung, Ha-Young;Kim, Dae Sung;Lee, Seung-Ho;Lim, Hyung Mi;Kim, Kun;Jung, Min-Kyu
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.643-649
    • /
    • 2012
  • Coatings composited with alumina and Perfluoro alkoxyalkane (PFA) resin were deposited on stainless steel plate (SUS304) to further improve corrosion resistance. Plate (ca. $10{\mu}m$) and/or nanosize (27~43 nm) alumina used as inorganic additives were mixed in PFA resin to make alumina-fluoro composite coatings. These coatings were deposited on SUS304 plate with wet spray coating and then the film was cured thermally. According to the amount and ratio of the two kinds of alumina having plate morphology and nano size, corrosion resistance of the film was evaluated under strong acids (HF, HCl) and a strong base (NaOH). The film prepared with the addition of 5~10 wt% alumina powders in PFA resin showed corrosion resistance superior to that of pure PFA resin film. However, for the film prepared with alumina content above 10 wt%, the corrosion resistance did not improve with the physical properties, such as surface hardness and adhesion. The film prepared with plate/nanosize (weight ratio = 1/2) alumina especially enhanced the surface hardness and corrosion resistance. This can be explained as showing that the plate and the nanosize alumina dispersed in PFA resin effectively suppressed the penetration of cations and anions due to the long penetration length and fewer defects that accompany the improved surface hardness under a serious environment of 10% HF solution for over 120 hrs.

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

Application of Scanning Electron Microscopy (SEM) for Biotically Induced Microstructure Observation in Sedimentary Sample of Natural Condition (주사전자현미경 분석을 활용한 자연환경 퇴적시료의 생물기원구조 관찰)

  • Park, Hanbeom;Kim, Jinwook
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.165-173
    • /
    • 2020
  • The activity of living microorganism directly or indirectly affects to the biomineralization in sediments and rocks that display the unique biotic structure. Minerals in the biotic structures showed unique properties and bypass the thermodynamic and kinetic barriers. Therefore, investigations on the biotically induced microstructure is essential to identify the new mineral formation mechanism by analyzing crystal structures and morphology at a nano-scale. The significant implication as well as advantages of using scanning electron microscopy to characterize the biotic structures were discussed in this paper for the examples of hydrothermal vent area microbial mat and deep-sea ferromanganese crust sample.

The Study of Ni-Pd Alloy Characteristics to Form a NiSi for Shallow S/D Junction (Shallow S/D Junction에 적용 가능한 NiSi를 형성하기 위한 Ni-Pd 합금의 특성 연구)

  • Lee, Won-Jae;Oh, Soon-Young;Agchbayar, Tuya;Yun, Jang-Gn;Kim, Yong-Jin;Zhang, Ying-Ying;Zhong, Zhun;Kim, Do-Woo;Cha, Han-Seob;Heo, Sang-Bum;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.603-606
    • /
    • 2005
  • In this paper, the formation and thermal stability of Ni-silicide using Ni-Pd alloys is studied for ultra shallow S/D junction of nano-scale CMOSFETs. There are no different effects when Ni-Pd is used in single structure and TiN capping structure. But, in case of Cobalt interlayer structure, it was found that Pure Ni had lower sheet resistance than Ni-Pd, because of a thick silicide. Also, Ni-Pd has merits that surface of silicide and interface between silicide and silicon have a good morphology characteristics. As a result, Ni-Pd is an optimal candidate for shallow S/D junction when cobalt is used for thermal stability.

  • PDF

Fabrication of ZnO incorporated TMA-A zeolite nanocrystals (ZnO를 담지한 TMA-A 제올라이트 나노결정의 제조)

  • Lee, Seok-Ju;Lim, Chang-Sung;Kim, Ik-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.238-244
    • /
    • 2007
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$:2.2 TEOS:2.4 TMAOH:0.3 NaOH:200 $H_2O$. 0.3g of TMA-A zeolite and 5mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The ZnO incorporated TMA-A zeolite precursors, prepared from the process of mixing, stirring, centrifugal separation and drying, were calcined at temperatures from 400 to $600^{\circ}C$ for 3 h. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The Brunaur-Emett-Teller (BET) surface area of the ZnO incorporated TMA-A zeolite was measured. Subsequently, the morphology and the particle size depending on the temperature and time were observed using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and particle size analyzer.