• Title/Summary/Keyword: Nano-crystal

Search Result 630, Processing Time 0.026 seconds

Effect of hydrogenation surface modification on dispersion and nucleation density of nanodiamond seed particle (수소화 표면 개질이 나노다이아몬드 seed 입자의 분산 및 핵형성 밀도에 미치는 영향)

  • Choi, Byoung Su;Jeon, Hee Sung;Um, Ji Hun;Hwang, Sungu;Kim, Jin Kon;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.239-244
    • /
    • 2019
  • Two hydrogenation surface modifications, namely hydrogen atmosphere heat treatment and hydrogen plasma treatment, were found to lead to improved dispersion of nanodiamond (ND) seed particles and enhanced nucleation density for deposition of smooth ultrananocrystalline diamond (UNCD) film. After hydrogenation, the C-O and O-H surface functionalities on the surface of nanodiamond particles were converted to the C-H surface functionalities, and the Zeta potential was increased. As the degree of dispersion was improved, the size of nanodiamond aggregates decreased significantly and nucleation density increased dramatically. After hydrogen heat treatment at 600℃, average size of ND particles was greatly reduced from 3.5 ㎛ to 34.5 nm and a very high nucleation of ~3.9 × 1011 nuclei/㎠ was obtained for the seeded Si surface.

Simulation of the irradiation effect on hardness of Chinese HTGR A508-3 steels with CPFEM

  • Nie, Junfeng;Lin, Pandong;Liu, Yunpeng;Zhang, Haiquan;Wang, Xin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1970-1977
    • /
    • 2019
  • Understanding the irradiation hardening effect of structural steels under various irradiation conditions plays an important role in developing advanced nuclear systems. Such being the case, a crystal plasticity model for body-centered cubic (BCC) crystal based on the density of dislocations and irradiation defects is summarized and numerically implemented in this paper. Based on this model, nano-indentation hardness of Chinese A508-3 steels with ion irradiation is calculated. Very good agreement is observed between simulation and experimental data of several different irradiation doses subjected to various operating temperatures, from which, it can be concluded that indentation hardness increases with increasing irradiation dose at both room temperature and high temperature. Consequently, the validity of this model has been proved properly, and furthermore, the model established in this paper could guide the study of irradiation hardening effect and temperature effect to some extent.

Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides (나노급 Ir 삽입 니켈실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Yoon, Ki-Jeong;Lee, Tae-Hyun;Kim, Moon-Je
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.207-214
    • /
    • 2007
  • We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300-1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates shoed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Microstructure Characterization for Nano-thick Nickel Cobalt Composite Silicides from 10 nm-Ni0.5Co0.5 Alloy films (10 nm 두께의 니켈 코발트 합금 박막으로부터 제조된 니켈코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.308-317
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/(poly)Si and 10 nm-$Ni_{0.5}Co_{0.5}$/(Poly)Si structures to investigate the microstructure of nickel silicides at the elevated temperatures required lot annealing. Silicides underwent rapid annealing at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profilescope were employed for the determination of vortical microstructure and thickness. Nickel silicides with cobalt on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1100^{\circ}C$ and $900^{\circ}C$, respectively, while the conventional nickle monosilicide showed low resistance below $700^{\circ}C$. Through TEM analysis, we confirmed that a uniform, $10{\sim}15 nm$-thick silicide layer formed on the single-crystal silicon substrate for the Co-alloyed case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo-alloy composite silicide process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

Characteristics of sub-80 nm three-layered film manufactured by continuous roll-to-roll processes (연속 롤투롤 공정을 이용한 80 나노 이하의 3층 구조 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.191-195
    • /
    • 2023
  • Three-layer nano-coated films in applications for the back cover of mobile cellular phones were prepared utilizing a roll-to-roll continuous process. By introducing a coating layer with a ceramic/metal/ceramic three-layer structure, the inherent reflective properties of the metals were maintained while electrically insulating properties were maintained. The thickness of the composite coating layer on a large area PET film with a length of 1,500 nm and width of 500 nm was less than 60 nm, and a uniform thickness was maintained in all areas. The transmittance according to the wavelength range (240~1600 nm) of the nanocoating film gradually increases as the wavelength increases, and is about 48 % at 1,000 nm, which is within the infrared region, and about 35.5 % at 550 nm, which is within the visible region. These results meet the required level of coated backcover (< 40 %).

Formation of Asperites on the Plate-like Alumina Particles by Molten-salt Method (Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말 표면에 돌기형성 거동)

  • Lee, Yoon Joo;Kim, Bo Yeon;Shin, Dong-Geun;Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.560-565
    • /
    • 2014
  • Alumina nano-asperites were grown on plate-like alumina particles of which the surface had been covered with a capping agent to control the asperite formation sites on the particles. Utilized alumina source for asperite was nano sized ${\gamma}$-alumina, which was prepared by calcination of $Al(OH)_3$ at $600^{\circ}C$; silica suspension was used as the capping agent. Plate like alumina particles were covered by silica suspension and continuously heat-treated to $900^{\circ}C$ with nano sized ${\gamma}$-alumina, as the source material, under molten-salt atmosphere. Asperite growing site were controlled by the degree of coating of the capping agent; 10-20 nanosize of ${\theta}$-alumina were formed on the particle surface. On the other hand, alumina particles without capping agent were observed to undergo only step-like crystal growth during heat-treatment.

A Study on Low-Melting Temperature Sn-In (wt%) Pb-Free Solders for Photovoltaic Ribbons (태양광 리본용 저융점 Sn-In (wt%) 무연 솔더 연구)

  • Dong-Hyeon Shin;Seung-Han Lee;Tae-Sik Cho;Il-Sub Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.186-190
    • /
    • 2023
  • We studied the various characteristics of Sn-In (wt%) Pb-free solders for photovoltaic ribbon application. The solders near the eutectic composition of Sn48In52 (wt%) existed in InSn4 and In3Sn alloy phases, and in In crystal phase, but not in Sn crystal phase. In addition, the InSn4 phase (γ-alloy) existed separately from the In3Sn (β-alloy) and the In phase confirmed by an SEM-EDS-mapping. The melting temperature of the eutectic solder of Sn48In52 (wt%) was 119.2℃, and when the Sn content decreased in reference to the eutectic composition, it slightly increased to 121.4℃, but when the Sn content increased, it remained almost constant at 119.1℃. The peel strength of the ribbon plated with the Sn42In58 (wt%) solder was 38.7 N/mm2, and it tended to increase when the Sn content increased. The peel strength of the eutectic Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn51In49 (wt%) solder was 61.6 N/mm2 that was the highest.

A study on the heat treatment effect upon luminous properties of oxy-fluoride glass doped with TiO2 (TiO2가 첨가된 oxy-fluoride 계 유리의 발광특성에 미치는 열처리 효과 연구)

  • Woo, Heesu;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.232-236
    • /
    • 2020
  • In this study, the optical properties of CaF2-Al2O3-B2O3-TiO2 (CABT) system glass doped with rare earth ion, that is used in various light devices due to its excellent luminous properties, were analyzed as a function of kind of crystal phases formed and size of crystals generated in the glass matrix. TiO2 was added to control nucleation and crystallization, and Eu2O3 was added to enhance the luminescence characteristics. DTA analysis was performed to confirm the heat treatment condition of crystal generation, and XRD and SEM anal ysis were carried out for the crystal phase change of nanometer size. As a result of the analysis, the luminous properties of oxy-fluoride-based glass were improved duo to crystallization of nanometer size, but was rather degraded when excessively large crystals were generated.

Review: Magnetite Synthesis using NanoFermentation (Review: NanoFermentation을 이용한 자철석 합성연구)

  • Moon, Ji-Won;Roh, Yul;Phelps, Tommy J.
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.