DOI QR코드

DOI QR Code

Characteristics of sub-80 nm three-layered film manufactured by continuous roll-to-roll processes

연속 롤투롤 공정을 이용한 80 나노 이하의 3층 구조 필름 제조 및 특성

  • Nam Il Kim (Department of Chemical Engineering, Hannam University) ;
  • Geug Tae Kim (Department of Chemical Engineering, Hannam University)
  • 김남일 (한남대학교 공과대학 화학공학과) ;
  • 김극태 (한남대학교 공과대학 화학공학과)
  • Received : 2023.09.14
  • Accepted : 2023.10.11
  • Published : 2023.10.31

Abstract

Three-layer nano-coated films in applications for the back cover of mobile cellular phones were prepared utilizing a roll-to-roll continuous process. By introducing a coating layer with a ceramic/metal/ceramic three-layer structure, the inherent reflective properties of the metals were maintained while electrically insulating properties were maintained. The thickness of the composite coating layer on a large area PET film with a length of 1,500 nm and width of 500 nm was less than 60 nm, and a uniform thickness was maintained in all areas. The transmittance according to the wavelength range (240~1600 nm) of the nanocoating film gradually increases as the wavelength increases, and is about 48 % at 1,000 nm, which is within the infrared region, and about 35.5 % at 550 nm, which is within the visible region. These results meet the required level of coated backcover (< 40 %).

핸드폰 Backcover에 적용한 3층 나노코팅 필름을 롤투롤(roll-to-roll) 연속 공정을 통하여 제조하였다. 세라믹/금속/세라믹 3층 구조의 코팅층을 도입함으로써 금속 고유의 반사 특성을 유지하면서 전기적으로는 절연 특성을 유지하였다. 길이와 폭이 각각 1500 nm, 500 nm인 대면적 PET 필름 위에 도입된 복합 코팅층의 두께는 60 nm 이하를 보였고 모든 영역에서 균일한 두께를 유지하고 있음을 확인하였다. 나노코팅 필름의 파장대(240~1600 nm)에 따른 투과율은 파장이 증가함에 따라 투과율 역시 점차 증가하고 있으며, 적외선 영역인 1,000 nm에서 약 48 %, 가시광선 영역에 해당하는 550 nm에서는 약 35.5 %의 투과율을 보였다. 이는 코팅된 Backcover의 요구 수준(< 40 %)에 부합한다.

Keywords

Acknowledgement

본 연구는 "2022년도 나노 소재·부품 수요맞춤형 실증 지원" 연구 사업으로 수행되었으며, 이에 감사드립니다(과제명: 80나노이하 3-LAYER 연속공정을 통한 핸드폰 글라스틱 Back-Cover 복합코팅필름). 연구결과물의 학술지 게재를 허락하신 (주)알에스엠큐브 김극태 대표와 제작장비 지원하신 (주)유니플라텍 강석찬 대표에게도 감사드립니다.

References

  1. Y. Li and H. Shimizu, "Fabrication of nanostructured polycarbonate/poly(methyl methacrylate) blends with improved optical and mechanical properties by high-shear processing", Polym. Eng. Sci. 51 (2011) 1437.
  2. T. Sako, S. Nobukawa and M. Yamaguchi, "Surface localization of poly(methyl methacrylate) in a miscible blend with polycarbonate", Polym. J. 47 (2015) 576.
  3. N. Moonprasith, J. Date, T. Sako, T. Kida, T. Hiraoka and M. Yamaguchi, "Segregation behavior of miscible PC/PMMA blends during injection molding", Materials 15 (2022) 2994.
  4. T. Bubmann, A. Seidel, H. Ruckdaschel and V. Altstadt, "Transparent PC/PMMA blends with enhanced mechanical properties via reactive compounding of functionalized polymers", Polymers 14 (2022) 73.
  5. D.G. Legrand and J.T. Bendler, "Handbook of polycarbonate science and technology", Marcel Dekker (2000).
  6. U. Ali, K.J.Bt.A. Karim and N.A. Buang, "A review of the properties and applications of poly (methyl methacrylate) (PMMA)", Polym. Rev. 55 (2015) 678.
  7. S.T. Choi, G.T. Bae and J.H. Bae, "Protective film applied during thermoforming of glastic substrate and method of manufacturing protective film", KR patent (2019) 10-2057457.
  8. S.K. Cho and J.H. Lee, "Trends of gas barrier films via roll to roll process", Polym. Sci. Technol. 27 (2016) 297.
  9. R.R. Sondergaard, M. Hosel and F.C. Krebs, "Roll-to-roll fabrication of large area functional organic materials:, J. Polym. Sci. B Polym. Phys. 51 (2013) 16.
  10. J.H. Park, K.H. Shin and C.W. Lee, "Roll-to-roll coating technology and its applications: A review", Int. J. Precis. Eng. Manuf. 17 (2016) 537.