• 제목/요약/키워드: Nano-crystal

검색결과 630건 처리시간 0.025초

$LiTaO_3$ 단결정의 도메인 바운더리 관찰 (Observation of Nano-scale Domain Boundary in $LiTaO_3$ Single Crystals)

  • 정대용;김진상;박용욱;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.327-327
    • /
    • 2007
  • $LiTaO_3$ single crystal has been studied for surface acoustic wave(SAW) applications. There are two kinds of $LiTaO_3$ single crystals, stoichiometric $LiTaO_3$ (SLT) and congruent $LiTaO_3$ (CLT). These two crystals show quite different dielectrical properties, which might be related with defects in crystals. In this study, we observed the domain boundary of SLT and CLT with scanning nonlinear dielectric microscopy and discussed the stress distribution in $LiTaO_3$ single crystals.

  • PDF

반복변형된 Cu 및 Cu-Al 단결정 표면형상의 나노-스케일 관찰 (Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals)

  • 최성종;이권용
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.389-394
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AEM) was shown to be the powerful tool for nano-scale characterization of material surfaces. Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform, and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.

Liquid Crystal-based Imaging of Enzymatic Reactions at Aqueous-liquid Crystal Interfaces Decorated with Oligopeptide Amphiphiles

  • Hu, Qiongzheng;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1262-1266
    • /
    • 2010
  • In this study, we investigated the use of liquid crystals to selectively detect the activity of enzymes at interfaces decorated with oligopeptide-based membranes. We prepared a mixed monolayer of tetra(ethylene glycol)-terminated lipids and carboxylic acid-terminated lipids at the aqueous-liquid crystal (LC) interface. The 17 amino-acid oligopeptide SNFKTIYDEANQFATYK was then immobilized onto this mixed monolayer through N-hydroxysuccinimide-activation of the carboxylic acid groups. We examined the orientational behavior of nematic 4-cyano-4'-pentylbiphenyl (5CB) after conjugation of the 17 amino-acid oligopeptide with the mixed monolayer assembled at the interface. Immobilization of the oligopeptide caused orientational transitions in 5CB, with a change from homeotropic (perpendicular) to tilted alignment, which was primarily due to the reorganization of the monolayer. The orientation of the 5CB molecules returned to its homeotropic state after contacting the interface containing ${\alpha}$-chymotrypsin, which can cleave the immobilized oligopeptide. Control experiments confirmed that the enzymatic activity of ${\alpha}$-chymotrypsin triggered the ordering transitions in the LC. These results suggest that the LC can provide a facile method for selective detection of enzymatic activity.

Fabrication of mineral fiber via melt spinning method from blast furnace slag

  • Wang, Xiao-Song;Hur, Bo-Young
    • 한국결정성장학회지
    • /
    • 제24권4호
    • /
    • pp.158-163
    • /
    • 2014
  • Mineral fiber, or be called mineral wool when it assembles in large amounts, is a kind of wide applied man-made material with excellent thermal and acoustic insulation properties. In this work, mineral fiber was produced via melt spinning method by using iron blast furnace slag as raw material. Two critical experimental parameters for fabrication were investigated: melt pouring temperature and rotating speed of spinning wheels. The mineral fiber produced under the condition of melt pouring temperature $1500^{\circ}C$ and spinning speed 4000 rpm, showed the smoother surface and most quality, while the others had rough surfaces or with heavy shots. In general, mineral fibers with the size in the range of $12{\sim}49{\mu}m$ in diameter and 8~130 mm in length can be fabricated by this method, and the production rate is more than 34 wt.%, which could be up to 57 wt.% at maximum.

A Study on the Dip-pen Nanolithography Process and Fabrication of Optical Waveguide for the Application of Biosensor

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권4호
    • /
    • pp.163-168
    • /
    • 2008
  • Photonic crystal structures have been received considerable attention due to their high optical sensitivity. One of the techniques to construct their structure is the dip-pen lithography (DPN) process, which requires a nano-scale resolution and high reliability. In this paper, we propose a two dimensional photonic crystal array to improve the sensitivity of optical biosensor and DPN process to realize it. As a result of DPN patterning test, we have observed that the diffusion coefficient of the mercaptohexadecanoic acid (MHA) molecule ink in octanol is much larger than that in acetonitrile. In addition, we have designed and fabricated optical waveguides based on the mach-zehnder interferometer (MZI) for application to biosensors. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The MZI optical waveguides were measured of the optical characteristics for the application of biosensor.

광자결정 도파로 성형용 PDMS 스탬프 제작 (PDMS Stamp Fabrication for Photonic Crystal Waveguides)

  • 오승훈;최두선;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

Effect of pressure and temperature on bulk micro defect and denuded zone in nitrogen ambient furnace

  • Choi, Young-Kyu;Jeong, Se-Young;Sim, Bok-Cheol
    • 한국결정성장학회지
    • /
    • 제26권3호
    • /
    • pp.121-125
    • /
    • 2016
  • The effect of temperature and pressure in the nitrogen ambient furnace on bulk micro defect (BMD) and denuded zone (Dz) is experimentally investigated. It is found that as pressure increases, Dz depth increases with a small decrease of BMD density in the range of temperature, $100{\sim}300^{\circ}C$. BMD density with hot isostatic pressure treatment (HIP) at temperature of $850^{\circ}C$ is higher than that without HIP while Dz depth is lower due to much higher BMD density. As the pressure increases, BMD density is increased and saturated to a critical value, and Dz depth increases even if BMD density is saturated. The concentration of nitrogen increases near the surface with increasing pressure, and the peak of the concentration moves closer to the surface. The nitrogen is gathered near the surface, and does not become in-diffusion to the bulk of the wafer. The silicon nitride layer near the surface prevents to inject the additional nitrogen into the bulk of the wafer across the layer. The nitrogen does not affect the formation of BMD. On the other hand, the oxygen is moved into the bulk of the wafer by increasing pressure. Dz depth from the surface is extended into the bulk because the nuclei of BMD move into the bulk of the wafer.

CFRP CNT 패널을 적용한 동물용 X-ray 디텍터 디자인에 관한 연구 (A study on design for animal X-ray detector using CFRP CNT panel)

  • 이석현;김현성;강승민
    • 한국결정성장학회지
    • /
    • 제30권6호
    • /
    • pp.264-270
    • /
    • 2020
  • 사용자 중심의 서비스디자인 방법론을 통한 디자인개발을 진행하고 시제품 제작 시 소재 선정 기준에 대해 조사분석하여 선정된 소재인 CFRP(Carbon Fiber Reinforced Plastics) CNT(Carbon Nano Tube)를 동물용 X-ray 디텍터 패널부분에 적용하여 제품디자인 및 시제품 개발을 진행하고 CFRP CNT 패널을 적용하여 완성된 시제품을 Drop 테스트, 전면 외압 강도 시험, 방진/방수 성능 시험을 진행하여 야외환경에서 사용하는 휴대가능한 동물용 X-ray 디텍터로 활용이 가능한 제품임을 확인하였다.

Development of Nano Crystal Embedded Polymorphous Silicon Thin Film by Neutral Beam Assisted CVD Process at Room Temperature

  • Jang, Jin-Nyoung;Lee, Dong-Hyeok;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.171-171
    • /
    • 2012
  • Neutral beam assisted chemical vapor deposition (NBa-CVD) process has been developed as a nove,l room temperature deposition process for the light-soaking free nano-crystalline silicon (nc-Si) thin films including intrinsic and n-type doped thin film. During formation of nc-Si thin films by the NBa-CVD process with silicon reflector at room temperature, the energetic particles enhance doping efficiency and crystalline phase in nc-Si thin films without additional heating at substrate. The effects of incident NB energy controlled by the reflector bias have been confirmed by Raman spectra analysis. Additionally, TEM images show uniform nc-Si grains which imbedded amorphous phase without incubation layer. The nc-Si films by the NBa-CVD are hardly degenerated by light soaking; the degradations of photoconductivity were just a few percents before and after light irradiation.

  • PDF

Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part II. number and shapes

  • Lee, Kangsoo;Kim, Geug Tae;Lee, Yong Keun
    • 한국결정성장학회지
    • /
    • 제23권2호
    • /
    • pp.76-80
    • /
    • 2013
  • For further improvement of osseo-integration of bone crystal with a dental implant, a design optimization study is carried out for various holes inside its body to deliver bioactive materials and the effect of bioactive material injection on the bone crystal growing. When bioactive material is absorbed, the bone crystal can grow into holes, which would increase the strength of implant bonding as well as a surface integration. The stress concentrations near the uppermost outlet holes were reduced with increasing the number of outlet holes. A design improvement in the uppermost outlet was shown to be effective in reducing the stress concentration. For design parameters under consideration in this study, total area of outlet of 6.38 $mm^2$ and maximum stress of 1.114 MPa, which corresponds to type 6-C. It is due to the minimization of maximum stress and total area of outlet. The design of the outlet facing down was more effective in reducing the maximum stress value compared with a horizontal symmetry.