DOI QR코드

DOI QR Code

Liquid Crystal-based Imaging of Enzymatic Reactions at Aqueous-liquid Crystal Interfaces Decorated with Oligopeptide Amphiphiles

  • Received : 2010.02.01
  • Accepted : 2010.03.09
  • Published : 2010.05.20

Abstract

In this study, we investigated the use of liquid crystals to selectively detect the activity of enzymes at interfaces decorated with oligopeptide-based membranes. We prepared a mixed monolayer of tetra(ethylene glycol)-terminated lipids and carboxylic acid-terminated lipids at the aqueous-liquid crystal (LC) interface. The 17 amino-acid oligopeptide SNFKTIYDEANQFATYK was then immobilized onto this mixed monolayer through N-hydroxysuccinimide-activation of the carboxylic acid groups. We examined the orientational behavior of nematic 4-cyano-4'-pentylbiphenyl (5CB) after conjugation of the 17 amino-acid oligopeptide with the mixed monolayer assembled at the interface. Immobilization of the oligopeptide caused orientational transitions in 5CB, with a change from homeotropic (perpendicular) to tilted alignment, which was primarily due to the reorganization of the monolayer. The orientation of the 5CB molecules returned to its homeotropic state after contacting the interface containing ${\alpha}$-chymotrypsin, which can cleave the immobilized oligopeptide. Control experiments confirmed that the enzymatic activity of ${\alpha}$-chymotrypsin triggered the ordering transitions in the LC. These results suggest that the LC can provide a facile method for selective detection of enzymatic activity.

Keywords

References

  1. Song, X.; Swanson, B. I. Anal. Chem. 1999, 71, 2097. https://doi.org/10.1021/ac981145f
  2. Dietrich, C. Biophys. J. 2001, 80, 1417. https://doi.org/10.1016/S0006-3495(01)76114-0
  3. Stahelin, R. V.; Cho, W. Biochem. J. 2001, 359, 679. https://doi.org/10.1042/0264-6021:3590679
  4. Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D. Science 1993, 261, 585. https://doi.org/10.1126/science.8342021
  5. Tanaka, K.; Manning, P. A.; Yu, H. Langmuir 2000, 16, 2665. https://doi.org/10.1021/la9909244
  6. Yang, T.; Jung, S. Y.; Mao, H.; Cremer, P. S. Anal. Chem. 2001, 73, 165. https://doi.org/10.1021/ac000997o
  7. Gast, A. P.; Robertson, C. R.; Wang, S. W.; Yatcilla, M. T. Biomol. Eng. 1999, 16, 21. https://doi.org/10.1016/S1050-3862(99)00045-5
  8. Park, K. S.; Shin, S. Y.; Hahm, K. S.; Kim, Y. M. Bull. Korean Chem. Soc. 2003, 24, 1478. https://doi.org/10.5012/bkcs.2003.24.10.1478
  9. Kim, C. Bull. Korean Chem. Soc. 2010, 31, 372. https://doi.org/10.5012/bkcs.2010.31.02.372
  10. Gupta, V. K.; Skaife, J. J.; Dubrovsky, T. B.; Abbott, N. L. Science 1998, 279, 2077. https://doi.org/10.1126/science.279.5359.2077
  11. Tingey, M. L.; Wilyana, S.; Snodgrass, E. J.; Abbott, N. L. Langmuir 2004, 20, 6818. https://doi.org/10.1021/la049728+
  12. Jang, C. H.; Tingey, M. L.; Korpi, N. L.; Abbott, N. L. J. Am. Chem. Soc. 2005, 127, 8912. https://doi.org/10.1021/ja051079g
  13. Skaife, J. J.; Abbott, N. L. Langmuir 2000, 16, 3529. https://doi.org/10.1021/la991101h
  14. Jang, C. H.; Cheng, L. L.; Olsen, C. W.; Abbott, N. L. Nano Lett. 2006, 6(5), 1053. https://doi.org/10.1021/nl060625g
  15. Nielsen, U. B.; Cardone, M. H.; Sinskey, A. J.; MacBeath, G.; Sorger, P. K. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 9330. https://doi.org/10.1073/pnas.1633513100
  16. Harlow, E.; Lane, D. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory; New York, 1998.
  17. Pandey, A.; Mann, M. Nature 2000, 405, 837. https://doi.org/10.1038/35015709
  18. Vénien, A.; Levieux, D.; Dufour. E. Colloid Interface Sci. 2000, 223, 215. https://doi.org/10.1006/jcis.1999.6647
  19. Brake, J. M.; Daschner, M. K.; Luk, Y.Y.; Abbott, N. L. Science (Washington, D.C.) 2003, 302, 2094. https://doi.org/10.1126/science.1091749
  20. Lockwood, N. A.; Abbott, N. L. Curr. Opin. Colloid Interface Sci. 2005, 10, 111. https://doi.org/10.1016/j.cocis.2005.06.002
  21. Brake, J. M.; Mezera, A. D.; Abbott, N. L. Langmuir 2003, 19, 8629. https://doi.org/10.1021/la034469u
  22. Brake, J. M.; Daschner, M. K.; Abbott, N. L. Langmuir 2005, 21, 2218. https://doi.org/10.1021/la0482397
  23. Lockwood, N. A.; de Pablo, J. J.; Abbott, N. L. Langmuir 2005, 21, 6805. https://doi.org/10.1021/la050231p
  24. Park, J. S.; Teren, S.; Tepp, W. H.; Beebe, D. J.; Johnson, E. A.; Abbott, N. L. Chem. Mater. 2006, 18, 6147. https://doi.org/10.1021/cm0606732
  25. Park, J. S.; Abbott, N. L. Adv. Mater. 2008, 20, 1185. https://doi.org/10.1002/adma.200702012

Cited by

  1. Orientational behaviour of ultraviolet-tailored 4-cyano-4'-pentylbiphenyl at the aqueous/liquid crystal interface vol.38, pp.9, 2011, https://doi.org/10.1080/02678292.2011.603439
  2. Detecting Proteins in Microfluidic Channels Decorated with Liquid Crystal Sensing Dots vol.28, pp.50, 2012, https://doi.org/10.1021/la303213h
  3. Oligopeptide-decorated liquid crystal droplets for detecting proteases vol.50, pp.81, 2014, https://doi.org/10.1039/C4CC04651J
  4. Detection of cholesterol molecules with a liquid crystal-based pH-driven sensor vol.50, pp.13, 2015, https://doi.org/10.1007/s10853-015-9027-8
  5. Imaging the Enzymatic Reaction of Urease Using Liquid Crystal-Based pH Sensor vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4377
  6. Chemical and biological sensing using liquid crystals. vol.1, pp.1, 2010, https://doi.org/10.1080/21680396.2013.769310
  7. Label-free optical detection of thrombin using a liquid crystal-based aptasensor vol.141, pp.None, 2010, https://doi.org/10.1016/j.microc.2018.05.010
  8. Fabrication of Liquid Crystal Droplet Patterns for Monitoring Aldehyde Vapors vol.84, pp.10, 2010, https://doi.org/10.1002/cplu.201900470