DOI QR코드

DOI QR Code

A Study on the Dip-pen Nanolithography Process and Fabrication of Optical Waveguide for the Application of Biosensor

  • Kim, Jun-Hyong (Interdisciplinary Program of Photonic Engineering, Chonnam Natioanl University) ;
  • Yang, Hoe-Young (Interdisciplinary Program of Photonic Engineering, Chonnam Natioanl University) ;
  • Yu, Chong-Hee (Optical Communications Research Center, Electronics and Telecommunications Research Institute) ;
  • Lee, Hyun-Yong (Center for Functional Nano Fine Chemicals, Faculty of Applied Chemical Engineering, Chonnam National University)
  • Published : 2008.08.31

Abstract

Photonic crystal structures have been received considerable attention due to their high optical sensitivity. One of the techniques to construct their structure is the dip-pen lithography (DPN) process, which requires a nano-scale resolution and high reliability. In this paper, we propose a two dimensional photonic crystal array to improve the sensitivity of optical biosensor and DPN process to realize it. As a result of DPN patterning test, we have observed that the diffusion coefficient of the mercaptohexadecanoic acid (MHA) molecule ink in octanol is much larger than that in acetonitrile. In addition, we have designed and fabricated optical waveguides based on the mach-zehnder interferometer (MZI) for application to biosensors. The waveguides were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The MZI optical waveguides were measured of the optical characteristics for the application of biosensor.

Keywords

References

  1. J. Homola, S. S. Yee, D. Myszka, in: F. S. Ligler, C. A. Rowe Taitt (Eds.), "Optical Biosensors", Elsevier, Amsterdam, p. 207, 2002
  2. E. F. Schipper, A. M. Brugman, C. Domingues, L. M. Lechuga, R. P. H. Kooyman, and J. Greve, "The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology", Sens. Actuators, B 40, p. 147, 1997
  3. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, "Integrated Mach- Zehnder interferometer based on ARROW structures for biosensor applications", Sens. Actuators, B 92, p. 151, 2003
  4. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor", Sens. Actuators, B 97, p. 114, 2004
  5. R. Levy, A. Peled, and S. Ruschin, "Waveguided SPR sensor using a Mach-Zehnder interferometer with variable ratio", Sens. Actuators, B 119, p. 20 2006
  6. E. Yablonovitch, "Photonic band-gap structures", J. Opt. Soc. Am., B 10, No. 2, p. 283, 1993
  7. E. Yablonovitch, "Photonic crystals", J. Mod. Opt., Vol. 41, No. 2, p. 173, 1994 https://doi.org/10.1080/09500349414550261
  8. J. D. Joannopoulos, R. D. Meade, and J. Winn, "Photonic Crystals", Princeton Univ. Press, Princeton, 1995
  9. J. Fujita, Y. Ohnishi, Y. Ochiai, and S. Matsui, "Ultrahigh resolution of calixarene negative resist in electron beam lithography", Appl. Phys. Lett., Vol. 68, No. 9, p. 1297, 1996 https://doi.org/10.1063/1.115958
  10. J. M. Gibson, "Reading and writing with electron beams", Phys. Today, Vol. 50, No. 10, p. 56, 1997
  11. S. B. Clendenning, S. Aouba, M. S. Rayat, D. Grozea, J. B. Sorge, P. M. Brodersen, R. N. S. Sodhi, Z. H. Lu, C. M. Yip, M. R. Freeman, H. E. Ruda, and I. Manners, "Direct writing of patterned ceramics using electron-beam lithography and metallopolymer resists", Adv. Mater., Vol. 16, No. 3, p. 215, 2004 https://doi.org/10.1002/adma.200305740
  12. W. Chu, H. I. Smith, and M. L. Schattenburg, "Replication of 50 nm linewidth device patterns using proximity x-ray lithography at large gaps", Appl. Phys. Lett., Vol. 59, No. 13, p. 1641, 1991 https://doi.org/10.1063/1.106256
  13. J. G. Goodberlet, "Patterning 100 nm features using deep-ultraviolet contact photolithography", Appl. Phys. Lett., Vol. 76, No. 6, p. 667, 2000 https://doi.org/10.1063/1.125856
  14. P. J. Silverman, "The interl lithography roadmap", Intel Technol. J., Vol. 6, No. 2, p. 55, 2002
  15. H. S. Kim, D. H. Shin, S. K. Kim, J. K. Rhee, B. S. Lee, H. W. Kim, J. U. Lee, Y. S. Han, and Y. H. Choe, "Fabrication technology for improving pattern quality in two-dimensional photonic crystal structure", J. of KIEEME(in Korean), Vol. 16, No. 6, p. 515, 2003 https://doi.org/10.4313/JKEM.2003.16.6.515
  16. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, "Dip-pen nanolithography", Science, Vol. 283, p. 661, 1999 https://doi.org/10.1126/science.283.5402.661
  17. R. D. Piner, S. Hong, and C. A. Mirkin, "Improved imaging of soft materials with modified AFM tips", Langmuir, Vol. 15, No. 17, p. 5457, 1999 https://doi.org/10.1021/la990408d
  18. S. Hong, J. Jhu, and C. A. Mirkin, "A new tool for studying the in situ growth processes for selfassembled monolayers under ambient conditions", Langmuir, Vol. 15, No. 23, p. 7897, 1999 https://doi.org/10.1021/la991095p
  19. S. H. Hong, J. Zhu, and C. A. Mirkin, "Dip-pen nanolithography", Science, Vol. 286, p. 523, 1999 https://doi.org/10.1126/science.286.5439.523
  20. D. A. Weinberger, S. G. Hong, B. W. Wessels, and T. B. Higgins, "Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via 'Dip-pen' nanolithography and wet chemical etching", Adv. Mater., Vol. 12, No. 21, p. 1600, 2000 https://doi.org/10.1002/1521-4095(200011)12:21<1600::AID-ADMA1600>3.0.CO;2-6
  21. B. W. Maynor, Y. Li, and J. Liu, "Au 'Ink' for AFM 'Dip-pen' nanolithography", Langmuir, Vol. 17, No. 9, p. 2575, 2001 https://doi.org/10.1021/la001755m
  22. J. Haaheim, R. Eby, M. Nelson, J. Fragala, B. Rosner, H. Zhang, and G. Athas, "Dip-pen nanolithography (DPN): process and instrument performance with Nanoink's NSCRIPTOR system", Ultramicroscopy, Vol. 103, No. 2, p. 117, 2005 https://doi.org/10.1016/j.ultramic.2004.11.015