• Title/Summary/Keyword: Nano-coating

Search Result 770, Processing Time 0.027 seconds

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.

Study on the FPCS for Photoresist Coating of Semiconductor Manufacturing Process (반도체 생산공정의 감광액 도포를 위한 FPCS에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4467-4471
    • /
    • 2013
  • In this research, developed full-scan photoresist coating system(FPCS) can improve the efficiency of the photoresist coating system essential for spinner equipment in nano semiconductor manufacturing process. The devices developed in this research, which can be swiftly replaced in case abnormal state element changes or wafer manufacturing defect occurs, are anticipated to improve module yield as well as real-time monitoring on the state element in order to prevent the complex process defect due to the photoresist miss coating.

Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.105-109
    • /
    • 2016
  • We prepared a working electrode (WE) with a blocking layer (BL) containing 0 ~ 0.5 wt% Ag nano powders to improve the energy conversion efficiency (ECE) of dye sensitized solar cell (DSSC). FESEM and micro-Raman were used to characterize the microstructure and phase. UV-VIS-NIR spectroscopy was employed to determine the adsorption of the WE with Ag nano powders. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with Ag nano powders. From the results of the microstructural analysis, we confirmed that Ag nano powders with particle size of less than 150 nm were dispersed uniformly on the BL. Based on the phase and adsorption analysis, we identified the existence of Ag and found that the adsorption increased when the amount of Ag increased. The photovoltaic results show that the ECE became 4.80% with 0.3 wt%-Ag addition compared to 4.31% without Ag addition. This improvement was due to the increase of the localized surface plasmon resonance (LSPR) of the BL resulting from the addition of Ag. Our results imply that we might be able to improve the efficiency of a DSSC by proper addition of Ag nano powder to the BL.

Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties (CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Pil;Kang, Young-Taec
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

Micro/Nano Adhesion and Friction Properties of Mixed Self-assembled Monolayer (혼합 자기 조립 단분자막의 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2004
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and under micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that water contact angles of mixed SAMs were similar to those of pure SAMs. The morphology of coating surface was roughened as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain length, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

Micro/nano adhesion and friction properties of mixed self-assembled monolayer (혼합 Self-assembled monolayer의 마이크로/나노 응착 및 마찰 특성)

  • Oh Hyun-Jin;Yoon Eui-Sung;Han Hung-Gu;Kong Hosung;Jhang Kyung Young
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.56-63
    • /
    • 2003
  • Micro/nano adhesion and friction properties of mixed self-assembled monolayer (SAM) with different chain length for MEMS application were experimentally studied. Many kinds of SAM having different spacer chains(C6, C10 and C18) and their mixtures (1:1) were deposited onto Si-wafer, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and micro scale applied load were measured using ball-on-flat type micro-tribotester. Surface roughness and water wetting angles were measured with SPM (scanning probe microscope) and contact anglemeter. Results showed that wetting angles of mixed SAMs showed the similar value of pure SAMs. The coating surface morphology was increased as mixing of SAM. Nano adhesion and nano friction decreased as increasing of the spacer chain length and mixing of SAM. Micro friction was decreased as increasing of the spacer chain, but micro friction of mixed SAM showed the value between pure SAMs. Nano adhesion and friction mechanism of mixed SAM was proposed in a view of stiffness of spacer chain modified chemically and topographically.

  • PDF

Molecular Dynamics Study on Behaviors of Liquid Cluster with Shape and Temperature of Nano-Structure Substrate (나노구조기판의 형상 및 온도변화에 따른 액체 클러스터의 거동에 대한 분자동역학적 연구)

  • Ko, Sun-Mi;Jeong, Heung-Cheol;Shibahara, Masahiko;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2008
  • Molecular dynamic simulations have been carried out to study the effect of the nano-structure substrate and its temperature on cluster laminating. The interaction between substrate molecules and liquid molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the liquid cluster on nano-structure substrate. In the present model, the Lennard-Jones potential is applied to mono-atomic molecules of argon as liquid and platinum as nano-structure substrate to perform simulations of molecular dynamics. The effect of wettability on a substrate was investigated for the various beta of Lennard-Jones potential. The behavior of the liquid cluster and nano-structure substrate depends on interface wettability and function of molecules force, such as attraction and repulsion, in the collision progress. Furthermore, nano-structure substrate temperature and beta of Lennard-Jones potential have effect on the accumulation ratio. These results of simulation will be the foundation of coating application technology for micro fabrication manufacturing.

  • PDF

Thin Film Micromachining Using Femtosecond Laser Photo Patterning of Organic Self-assembled Monolayers

  • Chang Won-Seok;Choi Moo-Jin;Kim Jae-Gu;Cho Sung-Hak;Whang Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • Self-Assembled Monolayers (SAMs) formed by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecules and bio molecules. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAM structure formation.

Characteristics of Energy Dissipation in Vibration Absorbing Nano-Damper According to the Architecture of Silica Particle (세라믹 분말의 입자구조에 따른 나노 진동 흡수장치의 에너지 소산 효율 특성에 대한 연구)

  • Moon, Byung-Young;Kim, Heung-Seob
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.144-149
    • /
    • 2003
  • This study shows an experimental investigation of a reversible nano colloidal damper, which is statically loaded. The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pore and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices. Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated. As a result, he proposed nano damper is effective one, which can be replaced the conventional damper.