• Title/Summary/Keyword: Nano-coating

Search Result 765, Processing Time 0.034 seconds

Effects of Nano-sized Diamond on Wettability and Interfacial Reaction for Immersion Sn Plating

  • Yu, A-Mi;Kang, Nam-Hyun;Lee, Kang;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.59-63
    • /
    • 2010
  • Immersion Sn plating was produced on Cu foil by distributing nano-sized diamonds (ND). The ND distributed on the coating surface broke the continuity of Sn-oxide layer, therefore leading to penetrate the molten solder through the oxide and retarding the wettability degradation during a reflow process. Furthermore, the ND in the Sn coating played a role of diffusion barrier for Sn atoms and decreased the growth rate of intermetallic compound ($Cu_6Sn_5$) layer during the solid-state aging. The study confirmed the importance of ND to improve the wettability and reliability of the Sn plating. Complete dispersion of the ND within the immersion Sn plating needs to be further developed for the electronic packaging applications.

The application of hydrated fine MgO particles for flux pinning center in the HTS-BSCCO system

  • 김성환;김철진;정준기;박성창;유재무
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.188-192
    • /
    • 2002
  • To introduce flux pinning center in HTS-BSCCO system, nano-size MgO particles were uniformly distributed within the Bi-2223 grain by partial hydration of MgO. The existing method MgO doped Bi-2223 used nato-size MgO powders, which resulted in agglomeration during mixing or grain growth during heat-treatment due to the high surface energy of the fine particles. By hydration of the MgO surface, the agglomeration of the MgO powders was avoided and the size of remaining MgO core was controlled by changing hydration medium and time. The thin film obtained by spin coating of (Bi_$1.8/Pb_{0.4}$)$Sr_2$$_{Ca}$$2.2/Cu_3$ $O_{y}$ nitrate solution mixed with hydrated MgO showed the even distribution of nano-size MgO particles in the Bi-2212 grains.s.s.

  • PDF

Research on the Solution and Properties of Ni-P/n-$Al_2O_3$ Electroless Composite Plating

  • Huang, Yan-bin;Liu, Fei-fei;Zhang, Qi-yong;Ba, Guo-zhao;Liang, Zhi-jie
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.257-260
    • /
    • 2007
  • In order to further improve the corrosion resistance and wear resistance of the Ni-P coatings of electroless plating, electroless Ni-P/n-$Al_2O_3$ composite deposits were prepared by adding some nano $Al_2O_3$ Particles in Ni-P plating bath. The bath composition and proproties were studied in this paper. The orthogonal test was applied in order to get the new composite solution, taking the initial stable potential as evaluation standard and considering the elements correlation at the same time. The processing parameters have been optimized by single factor experiment in which the depositing speed was chosen as the evaluation standard. The results showed that the process is stable and the composite Ni-P/n-$Al_2O_3$ deposits werebright and smooth, whose hardness and corrosion resistance are much better than simple Ni-P coatings. Furthermore the surface appearance and structure of the composite Ni-P/n-$Al_2O_3$ coating were investigated by SEM and XRD method. It was proved that the coating surface is typical cystiform cells and its structure is amorphous. All test results ofcomposite coating showed that all various physical coating properties had been improved by adding nano-particles. The hardness of optimal coating is more than 600HV and increases to 1000HV after heat-treating, and its hardness is 20~50% higher than Ni-P coating. The rust points appeared in 200 hour by immersing the coating into the 10%HCl solution and the corrosive speed is $3{\times}10^{-3}mg/(cm^2{\cdot}h)$which was obtained after 300 hour. In the same condition Ni-P coating is $5.6{\times}10^{-3}mg/(cm^2{\cdot}h)$. The salt spray resistance of the layers can exceed 600h with the thickness $20{\mu}m$.

The Micro Structure Characteristics of Coating Layer on SM490B with HVOF Coating (HVOF용사 코팅한 SM490B 코팅층의 미시조직 특성)

  • Nam Ki-Soo;Cho Won-ik;Yoon Myung-Jin;Kim Byung-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • High velocity oxy-fuel thermally sprayed coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks. The hard WC phase in the coating resists to the wear while the soft metallic Co increases the adhesive and cohesive bonding properties. The coating properties deposited by the HVOF process are greatly dependent on the feedstock materials and processing parameters. The effects of the feedstock material and process coating parameters including the in-flight particle parameters and resultant coating microstructures were observed in this paper.

EXPERIMENTAL STUDY ON CHF CHARACTERISTICS OF WATER-TI02 NANO-FLUIDS

  • Kim, Hyung-Dae;Kim, Jeong-Bae;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • CHF characteristics of nano- fluids were investigated with different volumetric concentrations of $TiO_2$ nanoparticles. Pool boiling experiments indicated that the application of nano-fluids, instead of pure water, as a cooling liquid significantly increased the CHF. SEM (scanning electron microscope) observations subsequent to the pool boiling experiments revealed that nanoparticles were coated on the heating surface during pool boiling of nano-fluids. In order to investigate the roles of nanoparticles in CHF enhancement ofb nano-fluids, pool boiling experiments were performed using (a) a nanoparticle-coated heater, prepared by pool boiling of nano-fluids, immersed in pure water and (b) a nanoparticle-coated heater immersed in nano-fluids. The results demonstrated two different roles of nanoparticles in CHF enhancement using nano-fluids: the effect of nanoparticles coated on the heater surface and the effect of nanoparticles suspended in nano- fluids.

Micro/Nano Adhesion and Friction Properties of SAMs with Different Head and Functional Group according to the Coating Methods (코팅 방법에 따른 이종 SAMs의 관능기별 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • Micro/nano adhesion and friction properties of self-assembled monolayers (SAMs) with different head- and end-group were experimentally studied according to the coating methods. Various kinds of SAM having different spacer chains (C10 and C18), head-group and end-group were deposited onto Si-wafer by dipping and chemical vapour deposition (CVD) methods under atmospheric pressure, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and also those under micro scale applied load were measured using a ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter respectively. Results showed that water contact angles of SAMs with the end-group of fluorine show higher relatively than those of hydrogen. SAMs with the end-group of fluorine show lower nano-adhesion but higher micro/nanofriction than those with hydrogen. Water contact angles of SAMs coated by CVD method show high values compared to those by dipping method. SAMs coated by CVD method show the increase of nano-adhesion but the decrease of nano-friction. Nano-adhesion and friction mechanism of SAMs with different end-group was proposed in a view of size of fluorocarbon molecule.