• Title/Summary/Keyword: Nano-adhesion

Search Result 340, Processing Time 0.026 seconds

Titanium Dioxide Nanoparticles filled Sulfonated Poly(ether ether ketone) Proton Conducting Nanocomposites Membranes for Fuel Cell

  • Kalappa, Prashantha;Hong, Chang-Eui;Kim, Sung-Kwan;Lee, Joong-Hee
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.87-90
    • /
    • 2005
  • This paper presents an evaluation of the effect of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree of 57%. A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with standard nafion membrane.

  • PDF

Tissue and Immune Responses on Implanted Nanostructured Biomaterials

  • Khang, Dong-Woo;Kang, Sang-Soo;Nam, Tae-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.47.1-47.1
    • /
    • 2009
  • Nanostructured biomaterials have increased those potential for utilizing in many medical applications. In this study, benefit of nanotechnology for the response with biological targets will be described in terms of size, effective surface area and surface energy (physical aspect). Also, correlations between physical and biological interactions (greater protein adsorption on nano surface roughness) will be discussed for understanding biocompatibility of nanostructured biomaterials including carbon nanotube composites and nanostructured titanium surfaces. In the application parts, various major tissue cells, such as bone, cartilage, vascular and bladder cell responses will be discussed with suggested nanomaterials. Lastly, immune responses with macrophage (adhesion and several major cytokines) on nanostructured biomaterials will be described for evasive immune response.

  • PDF

Estimation of Insulation Life of PAI/Nano Silica Hybrid Coil by Accelerated Thermal Stress (가속된 열적 스트레스에 의한 PAI / Nano Silica 하이브리드 코일의 절연수명 추정)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • In this paper, four types of insulation coils were fabricated by adding various kinds of glycols to improve the flexibility and adhesion of insulating coils in varnish dispersed with PAI / Nano Silica_15wt%. The applied voltage and frequency were 1.5 kV / 20 kHz for accelerated life evaluation. Through the 6th temperature stress level, the cause of the insulation breakdown of the coil was ignored and only the breakdown time was measured. The Arrhenius model was chosen based on the theoretical relationship between chemical reaction rate and temperature for estimating the insulation life of the coil due to accelerated thermal stress. Three types of distributions (Weibull, Lognormal, Exponential) were selected as the relationship between thermal stress model and distribution. The average insulation lifetime was estimated under the temperature stress of four types of insulation coils through the relationship between one kind of model and three kinds of distributions.

Self-Sensing and Interfacial Property of Carbon Nanofiber/Epoxy Composites with Different Aspect Ratios (형상비가 다른 탄소나노섬유/에폭시 복합재료의 자체 감지능 및 계면특성)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Kim, Sung-Ju;Wang, Zuo-Jia;Park, Joung-Man;Yoon, Dong-Jin
    • Journal of Adhesion and Interface
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2008
  • Self-sensing was evaluated for carbon nanofiber (CNF)/epoxy composites with two different aspect ratios via electro-micromechanical technique and wettability test. Volumetric electrical resistance was measured to evaluate the comparative dispersion degree indirectly and it decreased due to the increase of electric contacts with increasing CNF concentration. The dispersion degree was evaluated indirectly by calculating coefficient of variation (COV) of volumetric electrical resistance. The CNF type A with a high aspect ratio showed better self-sensing than the case of CNF type B with a short aspect ratio. The CNF type B/epoxy composite showed little self-sensing at a concentration higher than 2 vol% probably due to poor dispersion. The apparent modulus of CNF type B was higher than that of CNF type A due to the orientation effect and the high surface area. The thermodynamic work of adhesion was consistent with the result of apparent modulus.

  • PDF

Effects of Attachment and Proliferation of Retinal Pigment Epithelial Cells on Silk/PLGA Film (실크/PLGA 필름에서 실크 함량이 망막색소 상피세포의 부착 및 증식 거동에 미치는 영향)

  • Jo, Eun-Hye;Kim, Soo-Jin;Cho, Su-Jin;Lee, Ga-Young;Kim, On-You;Lee, Eun-Yong;Cho, Won-Hyung;Lee, Dong-Won;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 2011
  • Biomaterials for retinal tissue engineering must demonstrate several critical features for potential utility, including mechanical integrity, biocompatibility, and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. We prepared natural/synthetic hybrid silk/PLGA films using 0, 10, 20, 40, and 80 wt% of silk by a solvent evaporation method. MIT assay was used to confirm the number of cells attached on film at 1, 2, and 3 days, respectively. The morphology of cellular adhesion on films was also confirmed by scanning electron microscope (SEM). RT-PCR was conducted to confrrm mRNA expression of retinal pigment epithelitun (RPE) using RPE65 as a RPEs marker and the expression of cytokeratin were determined by immunofluorescence staining. We confirmed that the silk/PLGA film of 20~40 wt% silk was superior for the adhesion and proliferation of RPEs.

Strategy and progress to establish a micro-assembly technology archive considering the mechanisms of joining- and manipulating- processes

  • Takahashi, Kunio
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.367-369
    • /
    • 2005
  • For the purpose of the optimization or the break through of production processes, it is essential to understand or theoretically interpret dominant mechanisms of the processes, and further more, archive them. and utilize them combining some of them which are needed. Especially in the technology for micro- or nano-scaled objects, adhesion phenomenon is no more negligible, because the adhesion force is proportional to the size of objects meanwhile gravity force is proportional to the third power of it. Author has been working about the mechanisms for micro-assembly processes, which include joining processes and manipulation processes. In the present paper, the strategy and the progress to establish the micro-assembly technology archive are introduced. Some of the mechanisms are introduced with related basic approaches to the adhesion phenomena. Also it will be expressed that our data base project for the surface and interfacial energies is strongly related to these basic approaches.

  • PDF

Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

  • Jang, JiMan;Shon, MinYoung;Kwak, SamTak
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

Nano/Micro-friction properties or Chemical Vapor Deposited (CVD) Self-assembled monolayers on Si-wafer

  • Yoon Eui-Sung;Singh R.Arvind;Han Hung-Gu;Kong Hosung
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.90-98
    • /
    • 2004
  • Nano/micro-scale studies on friction properties were conducted on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature $(24{\pm}1^{\circ}C)$ and humidity $(45{\pm}5\%)$. Nano-friction was evaluated using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Si-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples was also evaluated at the micro-scale using a micro-tribotester. It was observed that SAMs had superior frictional property due to their low interfacial energies. In order to study of the effect of contact area on friction coefficient at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientific Corporation) of different radii 0.25 mm, 0.5 mm and 1 mm at different applied normal loads $(1500,\;3000\;and\;4800{\mu}N)$. Results showed that Si-wafer had higher friction coefficient than DPDM. Furthermore, unlike that in the case of DPDM, friction was severely influenced by wear in the case of Si-wafer. SEM evidences showed that solid-solid adhesion to be the wear mechanism in Si-wafer.

  • PDF

Nano/Micro-scale friction properties of Silicon and Silicon coated with Chemical Vapor Deposited (CVD) Self-assembled monolayers

  • Yoon, Eui-Sung;R.Arvind Singh;Oh, Hyun-Jin;Han, Hung-Gu;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • Abstract : Nano/micro-scale friction properties were investigated on Si (100) and three self-assembled monolayers (SAMs) (PFOTC, DMDM, DPDM) coated on Si-wafer by chemical vapor deposition technique. Experiments were conducted at ambient temperature(24$pm$1$circ$C) and humidity(45$pm$5%). Friction at nano-scale was measured using Atomic Force Microscopy (AFM) in the range of 0-40nN normal loads. In both Si-wafer and SAMs, friction increased linearly as a function of applied normal load. Results showed that friction was affected by the inherent adhesion in Ssi-wafer, and in the case of SAMs the physical/chemical structures had a major influence. Coefficient of friction of these test samples at the micro-scale was also energies. In order to study the effect of contact area on coefficient of friction at the micro-scale, friction was measured for Si-wafer and DPDM against Soda Lime balls (Duke Scientiffic Corporation) of different radii (0.25 mm, 0.5 mm and 1 mm) at different applied normal loads (1500, 3000 and 4800 mN). Results showed that Si-wafer had higher coefficient of friction than DPDM. Further, unlike that in the case of DPDM, friction in Si-wafer was severely influenced by its wear. SEM evidences showed that solid-solid adhesion was the wear mechanism in Si-wafer.