• Title/Summary/Keyword: Nano-Sized Particles

검색결과 364건 처리시간 0.03초

PECS에 의해 제조된 $Al_2O_3$/5vol.%Cu 나노복합재료의 파괴인성 (Fracture Toughness of $Al_2O_3$/5vol.%Cu Nanocomposites Fabricated by PECS)

  • 민경호;홍대희;김대건;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.149-153
    • /
    • 2000
  • In this study, the fabrication of $Al_2O_3$/5vol.%Cu nanocomposite and its mechanical property were discussed. The nanocomposite powders were produced by high energy ball milling of $Al_2O_3$ and Cu elemental powders. The ball-milled powders were sintered with Pulse Electric Current Sintering (PECS) facility. The relative densities of specimens sintered at $1200^{\circ}C$ and $1250^{\circ}C$ after soaking process at $900^{\circ}C$ were 96% and over 97%, respectively. The sintered microstructures were composed of $Al_2O_3$ matrix and the nano-sized Cu particles distributed on grain boundaries of $Al_2O_3$ matrix. The nanocomposite exhibited the enhanced fracture toughness compared with general monolithic $Al_2O_3$. The toughness increase was explained by the crack deflection and bridging by dispersed Cu particles.

  • PDF

Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles

  • Gang Yao;Hong-Yu Chen;Lai-Ma Luo;Xiang Zan;Yu-Cheng Wu
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2141-2152
    • /
    • 2024
  • Tungsten is the most promising plasma facing material for fusion reactors. Rolled W-Y2(Zr)O3 bulk material has been successfully produced in this study for future fusion engineering applications. The introduction of Zr is conducive to the refinement of the second phase particles. Nano-sized Y-Zr-O particles are observed in the powder and bulk samples. Related results show that the Y-Zr-O particle dispersion distribution improves the heat load resistance of W-Y2(Zr)O3 composite material. For four-point bend experiments in the same sampling direction, the DBTT of W-Y2(Zr)O3 composite materials is lower compared to the pure tungsten. For the same material, the DBTT of the material was selected for testing along the RD direction is lower compared to the material was selected for testing along the TD direction. Findings of this study provide suggestions for the subsequent industrial preparation of nanoscale particle-doped tungsten materials.

Cu 입자가 분산된 Al2O3 다공체의 제조 및 항균특성 (Synthesis and Antifungal Property of Porous Al2O3 with Dispersions of Cu Nanoparticles)

  • 유호석;김민성;오승탁;현창용
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.16-20
    • /
    • 2014
  • In order to fabricate the porous $Al_2O_3$ with dispersion of nano-sized Cu particles, freeze-drying of camphene/$Al_2O_3$ slurry and solution chemistry process using Cu-nitrate are introduced. Camphene slurries with 10 vol% $Al_2O_3$ was frozen at $-25^{\circ}C$. Pores were generated by sublimation of the camphene during drying in air. The sintered samples at 1400 and $1500^{\circ}C$ showed the same size of large pores which were aligned parallel to the sublimable vehicles growth direction. However, the size of fine pores in the internal walls of large pores decreased with increase in sintering temperature. It was shown that Cu particles with the size of 100 nm were homogeneously dispersed on the surfaces of the large pores. Antibacterial test using fungus revealed that the porous $Al_2O_3$/1 vol% Cu composite showed antifungal property due to the dispersion of Cu particles. The results are suggested that the porous composites with required pore characteristics and functional property can be fabricated by freeze-drying process and addition of functional nano particles by chemical method.

폐(廢) ITO 타겟으로부터 분무열분해(噴霧熱分解) 공정(工程)에 의한 ITO 나노 분말(粉末) 제조(製造) (Preparation of Nano-Sized ITO Powder from Waste ITO Target by Spray Pyrolysis Process)

  • 유재근;강성구;손진군
    • 자원리싸이클링
    • /
    • 제16권1호
    • /
    • pp.28-36
    • /
    • 2007
  • 폐 ITO 타겟을 염산에 용해시킨 복합 산용액을 원료로 하여 자체기술에 의해 개발한 분무열분해 반응장치를 통하여 평균입도가 50nm이하인 나노 ITO 분말을 제조하였으며, 반응온도 및 원료용액의 농도 등의 반응인자들의 변화에 따른 ITO 분말의 특성을 파악하였다. 반응온도가 $800^{\circ}C$로부터 $1100^{\circ}C$로 변화함에 따라 생성된 ITO 분말의 평균 입도는 40nm로부터 100nm정도까지 증가하고 있었으며, 조직도 점점 치밀화되면서 각각의 입자들이 독립된 다각형 형태를 나타내었으며, 입도분포는 더욱 불균일하게 나타나고 있었다. 또한 반응온도 증가에 따라 XRD 피크의 강도는 증가하였으며 비표면적은 감소하고 있었다. 원료용액 내의 인듐 성분의 농도가 50g/l로부터 400g/l로 증가됨에 따라 생성된 ITO 분말의 평균입도는 점점 증가하는 반면 입도분포는 더욱 불균일 하였다. 농도가 50g/l인 경우에는 ITO 분말의 평균입도는 30nm 이하이면서 입도분포는 비교적 균일하게 나타나고 있었다. 반면 농도가 포화농도에 가까운 400g/l인 경우에는 분말들의 입도분포는 20nm 정도부터 100nm 이상까지 공존하는 매우 불균일한 형태를 나타내고 있었다. 농도가 증가함에 따라 XRD 피크의 강도는 점점 증가하였으며 비표면적은 점점 감소하였다.

Comparison of teratogenecity induced by nano- and micro-sized particles of zinc oxide in cultured mouse embryos

  • Jung, A Young;Jung, Ki Youn;Lin, Chunmei;Yon, Jung-Min;Lee, Jong Geol;Lee, Beom Jun;Yun, Young Won;Nam, Sang-Yoon
    • 대한수의학회지
    • /
    • 제55권2호
    • /
    • pp.133-139
    • /
    • 2015
  • The increasing uses of zinc oxide nanoparticles (nZnO) in industrial and personal care products raise possible danger of using nZnO in human. To determine whether ZnO induces size-dependent anomalies during embryonic organogenesis, mouse embryos on embryonic day 8.5 were cultured for 2 days under 50, 100, and $150{\mu}g$ of nZnO (< 100 nm) or micro-sized ZnO (mZnO; $80{\pm}25{\mu}m$), after which the morphological changes, cumulative quantity of Zn particles, and expressions of antioxidant and apoptotic genes were investigated. Although embryos exposed to $50{\mu}g$ of ZnO exhibited no defects on organogenesis, embryos exposed to over $100{\mu}g$ of ZnO showed increasing anomalies. Embryos treated with $150{\mu}g$ of nZnO revealed significant changes in Zn absorption level and morphological parameters including yolk sac diameter, head length, flexion, hindbrain, forebrain, branchial bars, maxillary process, mandibular process, forelimb, and total score compared to the same dose of mZnO-treated embryos. Furthermore, CuZn-superoxide dismutase, cytoplasmic glutathione peroxidase (GPx) and phospholipid hydroperoxidase GPx mRNA levels were significantly decreased, but caspase-3 mRNA level was greatly increased in nZnO-treated embryos as compared to normal control embryos. These findings indicate that nZnO has severer teratogenic effects than mZnO in developing embryos.

입상의 이산화티타늄 박막을 이용한 수소센서 (Granular Thin Film of Titanium Dioxide for Hydrogen Gas Sensor)

  • 송혜진;오동훈;정진연;웬득화;조유석;김도진
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.325-329
    • /
    • 2009
  • Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a $SiO_2$/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of $850^{\circ}C$ in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ${\sim}2{\times}10^6$ at the optimum sensing temperature of $200^{\circ}C$, and ${\sim}10^3$ at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.

Homogenizer를 사용한 W/O 에멀젼법하에 나노크기 알루미나 분체 제조 가능성 평가 (Evaluation on the Possibility of Preparation of Nanosized Alumina Powder under W/O Emulsion Method Using Homogenizer)

  • 이융;함영민
    • 공업화학
    • /
    • 제21권5호
    • /
    • pp.488-494
    • /
    • 2010
  • W/O 에멀젼법하에 homogenizer를 사용하여 ${\alpha}$-알루미나 분체 제조 시 O : W 부피비, 교반속도, 계면활성제 사용량과 조성 및 종류 등의 변화에 의하여 분체의 입자형상, 응집성, 평균입경과 입도분포 등의 변화를 분석하였다. 계면활성제는 비이온 계면활성제가 사용되었고 단일 및 혼합계면활성제로는 SP80 및 [SP80 & TW80]을 사용하였고 보조계면활성제로는 n-부탄올을 사용하였다. SP80을 사용하였을 경우, 분체의 입자형상은 구형에 근접하였고 평균입경은 주어진 O : W 부피비 변화 및 16000 rpm 이상의 교반속도에서 큰 차이를 보이지 않았다. [SP80 & TW80]을 사용하였을 경우, 구형에 가까운 분체의 입자간 응집 및 합체현상은 $HLB_m$ = 5일 때 낮았고 평균입경은 단일계면활성제를 사용하였을 때 비하여 다소 감소하였다. $HLB_m$ = 5인 [SP80 & TW80]와 함께 0.1 vol% n-부탄올을 사용하였을 경우, 입자간 응집성이 상대적으로 낮고 나노크기의 입도를 갖는 분체 분율을 증가시킬 수 있었다.

배리어 유전체 방전형 2단 전기집진기의 나노입자 집진 및 잔류 오존 제거 특성 (Characteristics of Nano Particle Precipitation and Residual Ozone Decomposition for Two-Stage ESP with DBD)

  • 변정훈;지준호;윤기영;황정호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1678-1683
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Although DBD high electron density and energy, its potential use as nano and sub-micron sized particle charging are not well known. Aim of this work is to determine design and operating parameters of a two-stage ESP with DBD. DBD and ESP are used as particle charger and precipitator, respectively. We measured particle precipitation efficiency of two-stage ESP and estimated ozone decomposition of both pelletized $MnO_2$ catalyst and pelletized activated carbon. To examine the particle precipitation efficiency, nano and sub-micron sized particles were generated by a tube furnace and an atomizer. AC voltage of $7{\sim}10$ kV(rms) and 60 Hz is used as DBD plasma source. DC -8 kV is applied to the ESP for particle precipitation. The overall particle collection efficiency for the two-stage ESP with DBD is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized $MnO_2$ catalyst or pelletized activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

  • PDF

폴리머 용액법에 의한 In2O3 첨가 나노 WO3 분말 합성 및 NO2 가스 센서 특성 (NO2 Gas Sensing Properties of Nano-Sized In2O3 Doped WO3 Powders Prepared from Polymer Solution Route)

  • 김동민;이상진
    • 한국재료학회지
    • /
    • 제28권1호
    • /
    • pp.12-17
    • /
    • 2018
  • $In_2O_3$ doped $WO_3$ powders were prepared by a polymer solution route and their $NO_2$ gas sensing properties were analyzed. The synthesized powders showed nano-sized particles with specific surface areas of $6.01{\sim}21.5m^2/g$ and the particle size and shape changed according to the content of $In_2O_3$. The gas sensors fabricated with the synthesized powders were tested at operating temperatures of $400{\sim}500^{\circ}C$ and 100~500 ppm concentrations of $NO_2$ atmosphere. The particle size and $In_2O_3$ content affected on the initial sensor resistance in an air atmosphere. The highest sensitivity (8.57 at $500^{\circ}C$), which was 1.77 higher than the sensor consisting of the pure $WO_3$ sample, was measured in the 0.5 mol% $In_2O_3$ doping sample. In addition, the response time and recovery time were improved by the addition of $In_2O_3$.

Nano 및 Micro 크기의 Fe3O4 분말이 첨가된 열경화성 에폭시 접착제의 유도가열 및 접착 특성 (Heating Behavior and Adhesion Property of Epoxy Adhesive with Nano and Micro Sized Fe3O4 Particles)

  • 황지원;임태규;최승용;이남규;손민영
    • Composites Research
    • /
    • 제33권2호
    • /
    • pp.55-60
    • /
    • 2020
  • 구조용 일액형 에폭시 접착제에 나노 및 마이크로 크기의 Fe3O4 분말을 첨가하여 유도가열용 접착제를 제조하였고, 제조된 접착제를 이용하여 GFRP 피착재의 두께 및 Fe3O4 분말의 첨가량 변화에 따른 가열 성능을 평가하였다. 실험 결과, 접착제의 승온 거동이 유도 가열로 가열한 경우 오븐경화에 비해 GFRP 피착재의 두께에 영향을 작게 받는 것이 관찰되었으며 접착제 내의 Fe3O4 분말의 함량이 증가할수록 가열 속도와 전단 강도가 증가하는 경향을 나타냈다.