DOI QR코드

DOI QR Code

Granular Thin Film of Titanium Dioxide for Hydrogen Gas Sensor

입상의 이산화티타늄 박막을 이용한 수소센서

  • Song, Hye-Jin (School of Nano Science and Technology, Chungnam National University) ;
  • Oh, Dong-Hoon (School of Nano Science and Technology, Chungnam National University) ;
  • Jung, Jin-Yeun (School of Nano Science and Technology, Chungnam National University) ;
  • Nguyen, Duc Hoa (School of Nano Science and Technology, Chungnam National University) ;
  • Cho, You-Suk (School of Nano Science and Technology, Chungnam National University) ;
  • Kim, Do-Jin (School of Nano Science and Technology, Chungnam National University)
  • 송혜진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 오동훈 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 정진연 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 웬득화 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 조유석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 김도진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실)
  • Published : 2009.06.27

Abstract

Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a $SiO_2$/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of $850^{\circ}C$ in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ${\sim}2{\times}10^6$ at the optimum sensing temperature of $200^{\circ}C$, and ${\sim}10^3$ at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.

Keywords

References

  1. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, Sens. Actuators B, 93, 338 (2003) https://doi.org/10.1016/S0925-4005(03)00222-3
  2. C. H. Han, D. W. Hong, S. D. Han, J. Gwak and K. C. Singh, Sens. Actuators B, 125, 224 (2007) https://doi.org/10.1016/j.snb.2007.02.017
  3. N. D. Hoa, N. V. Quy, M. An, H. Song, Y. Kang, Y. Cho and D. Kim, J. Nanosci. Nanotechnol., 8(10), 5586 (2008) https://doi.org/10.1166/jnn.2008.1387
  4. J. Jung, H. Song, Y. Kang, D. Oh, H. Jung, Y. Cho and D. Kim (in Korean), Kor. J. Mater. Res., 18(10), 529 (2008) https://doi.org/10.3740/MRSK.2008.18.10.529
  5. W. T. Moon, K. S. Lee, Y. K.J un, H. S. Kim and S. H. Hong, Sens. Actuators B, 115, 123 (2006) https://doi.org/10.1016/j.snb.2005.08.024
  6. G. C. Mather, F. M. B. Marques and J. R. Frade, J. European Ceram. Soc, 19, 887 (1999) https://doi.org/10.1016/S0955-2219(98)00338-0
  7. Y. K. Jun, H. S. Kim, J. H. Lee and S. H. Hong, Sens. Actuators B, 107, 264 (2005) https://doi.org/10.1016/j.snb.2004.10.010
  8. J. E. L. Gomes, A. M. Huntz, Oxid. Met. 14(3), 249 (1980) https://doi.org/10.1007/BF00604567
  9. A. Rothschild, F. Edelman, Y. Komen and F. Cosndey, Sens. Actuators B, 67, 282 (2000) https://doi.org/10.1016/S0925-4005(00)00523-2
  10. J. B. Bates, J. C. Wang and R. A. Perkins, Phys. Rev. B, 19, 4130 (1979) https://doi.org/10.1103/PhysRevB.19.4130
  11. M. Tiemann, Chem. Eur. J., 13, 8376 (2007) https://doi.org/10.1002/chem.200700927
  12. S. I. Pyun, J. W. Park and Y. G. Yoon, J. Alloy. Compd., 231, 315 (1995) https://doi.org/10.1016/0925-8388(95)01806-9
  13. W. Gopel, G. Rocker and R. Feierabend, Phys. Rev. B, 28(6), 3427 (1983) https://doi.org/10.1103/PhysRevB.28.3427