• Title/Summary/Keyword: Nano-Network

Search Result 259, Processing Time 0.022 seconds

Preparation and Characterization of Monodispersed and Nano-sized Cu Powders

  • Kim, Tea-Wan;Lee, Hyang-Mi;Kim, Yong-Yee;Hwang, Kyu-Hong;Park, Hong-Chae;Yoon, Seog-Young
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.464-465
    • /
    • 2006
  • Monodispersed and nano-sized Cu powders were synthesized from copper sulfate pentahydrate $(CuSO_4{\cdot}5H_2O)$ inside a nonionic polymer matrix by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The influences of a nonionic polymer matrix on the particle size of the prepared Cu powders were characterized by means of X-ray diffraction), scanning electron microscopy), and particle size analysis). The smallen Cu powders with size of approximately 100 nm was obtained with adding of 0.04M sucrose at reaction temperature of $60\;^{\circ}C$. The particle size of the Cu powders prepared by the reduction inside polymer network was strongly dependent of the sucrose content and reaction temperature.

  • PDF

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

A Carbon Nanotubes-Silicon Nanoparticles Network for High Performance Lithium Rechargeable Battery Anodes

  • Kim, Byung Gon;Shin, Weon Ho;Lim, Soo Yeon;Kong, Byung Seon;Choi, Jang Wook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.116-122
    • /
    • 2012
  • As an effort to address the chronic capacity fading of Si anodes and thus achieve their robust cycling performance, herein, we develop a unique electrode in which silicon nanoparticles are embedded in the carbon nanotubes network. Utilizing robust contacts between silicon nanoparticles and carbon nanotubes, the composite electrodes exhibit excellent electrochemical performance : 95.5% capacity retention after 140 cycles as well as rate capability such that at the C-rate increase from 0.1C to 1C to 10C, the specific capacities of 850, 698, and 312 mAh/g are obtained, respectively. The present investigation suggests a useful design principle for silicon as well as other high capacity alloying electrodes that undergo large volume expansions during battery operations.

Combined nano-particle drug delivery and physiotherapy in treatment of common injuries in dance-sport

  • Weixin Dong;Gang Lu;Yangling Jiang;Fan Zhou;Xia Liu;Chunxia Lu
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.225-237
    • /
    • 2023
  • Combination of novel technologies with traditional physiotherapy in rehabilitation in injured athletes have shown to provide improved time of recovery. In specific, nanodrugs delivery systems are widely utilized as a counterpart to the physiotherapy in injuries in sports. In the present study, we focus on the common injuries in dance-sports, their recovery and the effect combination of nano-particle drug delivery with the physiotherapy practices. In this regard, a comprehensive review on the common injuries in dance sport is provided. Moreover, the researches on the effectiveness of the nano-particle drug delivery in therapy of such injuries and in similar cases are provided. The possibility of using combination of nano-particle drug delivery and physiotherapy is discussed in detail. Finally, using artificial intelligence methods, predictions on the recovery time and after-treatment side-effects is investigated. Artificial Neural Network (ANN) predictions suggested that using nano-particle drug delivery systems along with physiotherapy practices could provide shortened treatment time to recovery in comparison to conventional drugs. Moreover, the post-recover effects are less than the conventional methods.

Structural Heal th Monitoring Based On Carbon Nanotube Composite Sensors (나노 센서를 이용한 구조물 건전성 감시 기법)

  • Kang, In-Pil;Lee, Jong-Won;Choi, Yeon-Sun;Schu1z Mark J.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.613-619
    • /
    • 2006
  • This paper introduces a new structural health monitoring using a nano sensor. The sensor is made of nano smart composite material based on carbon nanotubes. The nano sensor is fabricated as a thin and narrow polymer film sensor that is bonded or deposited onto a structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensorcan form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods.

  • PDF

State Machine Frameworks Operating in Sensor Network Operation System based on Multi-Thread (멀티쓰레드 기반 센서네트워크 운영체제에서 동작하는 상태머신 프레임워크)

  • Lee, Seung-Keun;Kim, Byung-Kon;Choi, Byoung-Kyu;Shin, Heu
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.127-136
    • /
    • 2010
  • A wireless sensor network(WSN) which roles as a mediator between living environment and computers in ubiquitous computing is very essential research area. Due to the constraint that sensor nodes should work in very resource-restricted circumstances, an operating system that can manage resources effectively is demanded. Also, a sensor network should be able to deal with many events quickly and simultaneously in order to respond to various physical changes in outer environment. The Sensor Network Operating System such as TinyOS, MANTIS and NanoQplus is much designed so that it can satisfy such requirement. But, for programmers who develop application program for sensor networks, they have lack of frameworks which the development is easily possible from restricted development environment. In this paper for this, we implemented a state machine framework apt for responsive systems in NanoQplus which is multi-thread-based sensor network operating system. In addition we propose an event broker module(EBM) for effective event dispatching, a message data structure for message sharing among state machines, and an execution module that handles messages and their queue and performs state transition of the machines. Furthermore, we could do the development more easily an application program with a state-based framework by developing CASE tools.

Optical Transceiver Module for Next-generation Automotive Optical Network, MOST1000 (차세대 자동차 광네트워크 MOST1000 용 광트랜시버 모듈)

  • Kim, Gye Won;Hwang, Sung Hwan;Lee, Woo-Jin;Kim, Myoung Jin;Jung, Eun Joo;An, Jong Bea;Kim, Jin Hyeok;Moon, Jong Ha;Rho, Byung Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.196-200
    • /
    • 2013
  • Heretofore, it was enough that most of optical transceiver modules for automotive networks have the performance of data rate from 10 Mbps to 150 Mbps. As the required data rate in automotive infotainment systems has recently been increasing, the development of a new optical transceiver having high speed data rate over 1Gbps is now required. Therefore, we suggested a next-generation bi-directional optical transceiver module using vertical cavity surface emitting laser technology and plastic clad fiber technology, for the next-generation automotive optical network, MOST1000. We fabricated the high-speed and compact optical transceiver having 1 Gbps data rate and -22 dBm sensitivity satisfying bit error rate $10^{-12}$.

Titanium Dioxide Nanoparticles filled Sulfonated Poly(ether ether ketone) Proton Conducting Nanocomposites Membranes for Fuel Cell

  • Kalappa, Prashantha;Hong, Chang-Eui;Kim, Sung-Kwan;Lee, Joong-Hee
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.87-90
    • /
    • 2005
  • This paper presents an evaluation of the effect of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree of 57%. A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with standard nafion membrane.

  • PDF

Replication of Polyethylene Nano-Microstructures Using Ultrasonic Forming (초음파성형을 이용한 폴리에틸렌 나노 마이크로 구조물의 복제)

  • Lee, Chi-Hoon;Yu, Hyun-Woo;Shin, Bo-Sung;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1209-1216
    • /
    • 2009
  • Nano-micro hierarchical structures that nanoprotrusions were formed on the network-type microstructures were fabricated using an ultrasonic vibration forming technology. A commercial ultrasonic welding system was used to apply ultrasonic vibration energy. To evaluate the formability of ultrasonic vibration forming, nickel nano-micro hierarchical mold was fabricated and polyethylene (PE) was used as the replication material. The optimal molding time was 3.5 sec for PE nano-micro hierarchical structures. The molding process was conducted at atmospheric pressure.