DOI QR코드

DOI QR Code

A Carbon Nanotubes-Silicon Nanoparticles Network for High Performance Lithium Rechargeable Battery Anodes

  • Kim, Byung Gon (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Shin, Weon Ho (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lim, Soo Yeon (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kong, Byung Seon (KCC Central Research Institute) ;
  • Choi, Jang Wook (Graduate School of EEWS (WCU) and KAIST Institute NanoCentury, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2012.08.22
  • Accepted : 2012.09.30
  • Published : 2012.09.30

Abstract

As an effort to address the chronic capacity fading of Si anodes and thus achieve their robust cycling performance, herein, we develop a unique electrode in which silicon nanoparticles are embedded in the carbon nanotubes network. Utilizing robust contacts between silicon nanoparticles and carbon nanotubes, the composite electrodes exhibit excellent electrochemical performance : 95.5% capacity retention after 140 cycles as well as rate capability such that at the C-rate increase from 0.1C to 1C to 10C, the specific capacities of 850, 698, and 312 mAh/g are obtained, respectively. The present investigation suggests a useful design principle for silicon as well as other high capacity alloying electrodes that undergo large volume expansions during battery operations.

Keywords

References

  1. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  2. M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  3. B. A. Boukamp, G. C. Lesh and R. A. Huggins, J. Electrochem. Soc., 128, 725 (1981). https://doi.org/10.1149/1.2127495
  4. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nat. Mater., 4, 366 (2005). https://doi.org/10.1038/nmat1368
  5. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol., 3, 31 (2008). https://doi.org/10.1038/nnano.2007.411
  6. H. Kim, M. Seo, M.-H. Park and J. Cho, Angew. Chem. Int. Ed., 49, 2146 (2010). https://doi.org/10.1002/anie.200906287
  7. S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo and H.-K. Liu, Angew. Chem. Int. Ed., 45, 6896 (2006). https://doi.org/10.1002/anie.200601676
  8. J. Yang, M. Winter and J. O. Besenhard, Solid State Ionics, 90, 281 (1996). https://doi.org/10.1016/S0167-2738(96)00389-X
  9. L.-F. Cui, L. Hu, H. Wu, J. W. Choi and Y. Cui, J. Electrochem. Soc., 158, A592 (2011). https://doi.org/10.1149/1.3560030
  10. J. W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C. K. Chan and Y. Cui, Nano Lett., 10, 1409 (2010). https://doi.org/10.1021/nl100258p
  11. C. K. Chan, R. N. Patel, M. J. O'Connell, B. A. Korgel and Y. Cui, ACS Nano, 4, 1443 (2010). https://doi.org/10.1021/nn901409q
  12. M. Ge, J. Rong, X. Fang and C. Zhou, Nano Lett., 12, 2318 (2012). https://doi.org/10.1021/nl300206e
  13. M. T. McDowell, S. W. Lee, I. Ryu, H. Wu, W. D. Nix, J. W. Choi and Y. Cui, Nano Lett., 11, 4018 (2011). https://doi.org/10.1021/nl202630n
  14. M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett., 9, 3844 (2009). https://doi.org/10.1021/nl902058c
  15. T. Song, J. Xia, J.-H. Lee, D. H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K.-C. Hwang, J. A. Rogers and U. Paik, Nano Lett., 10, 1710 (2010). https://doi.org/10.1021/nl100086e
  16. H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, Nat. Nanotechnol., 7, 310 (2012). https://doi.org/10.1038/nnano.2012.35
  17. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix and Y. Cui, Nano Lett., 11, 2949 (2011). https://doi.org/10.1021/nl201470j
  18. J. Cho, J. Mater. Chem., 20, 4009 (2010). https://doi.org/10.1039/b923002e
  19. T. H. Hwang, Y. M. Lee, B.-S. Kong, J.-S. Seo and J. W. Choi, Nano Lett., 12, 802 (2011).
  20. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala and G. Yushin, Nat. Mater., 9, 353 (2010). https://doi.org/10.1038/nmat2725
  21. H. M. Jeong, S. Y. Lee, W. H. Shin, J. H. Kwon, A. Shakoor, T. H. Hwang, S. Y. Kim, B.-S. Kong, J.-S. Seo, Y. M. Lee, J. K. Kang and J. W. Choi, RSC Advances, 2, 4311 (2012). https://doi.org/10.1039/c2ra20170d
  22. L. Su, Z. Zhou and M. Ren, Chem. Commun., 46, 2590 (2010). https://doi.org/10.1039/b925696b
  23. B. Hertzberg, A. Alexeev and G. Yushin, J. Am. Chem. Soc., 132, 8548 (2010). https://doi.org/10.1021/ja1031997
  24. J. W. Choi, L. Hu, L. Cui, J. R. McDonough and Y. Cui, J. Power Sources, 195, 8311 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.108
  25. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts and A. A. Lucas, Carbon, 34, 1249 (1996). https://doi.org/10.1016/0008-6223(96)00074-7
  26. H. Yoshida, S. Takeda, T. Uchiyama, H. Kohno and Y. Homma, Nano Lett., 8, 2082 (2008). https://doi.org/10.1021/nl080452q
  27. A. Netz, R. A. Huggins and W. Weppner, J. Power Sources, 119-121, 95 (2003). https://doi.org/10.1016/S0378-7753(03)00132-0
  28. S. Bourderau, T. Brousse and D. M. Schleich, J. Power Sources, 81-82, 233 (1999). https://doi.org/10.1016/S0378-7753(99)00194-9
  29. U. Kasavajjula, C. Wang and A. J. Appleby, J. Power Sources, 163, 1003 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.084
  30. Y. M. Lee, J. Y. Lee, H.-T. Shim, J. K. Lee and J.-K. Park, J. Electrochem. Soc., 154, A515 (2007). https://doi.org/10.1149/1.2719644
  31. L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng and C. H. Chen, J. Power Sources, 195, 5052 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.088
  32. J. P. Maranchi, A. F. Hepp, A. G. Evans, N. T. Nuhfer and P. N. Kumta, J. Electrochem. Soc., 153, A1246 (2006). https://doi.org/10.1149/1.2184753

Cited by

  1. Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries vol.13, pp.5, 2013, https://doi.org/10.1021/nl400437f
  2. Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries vol.3, pp.18, 2015, https://doi.org/10.1039/C5TA00786K
  3. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials vol.4, pp.1, 2016, https://doi.org/10.1039/C5TA06962A