• Title/Summary/Keyword: Nano materials

Search Result 4,557, Processing Time 0.03 seconds

A Study on the $SO_2/CO_2/N_2$ Mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane (Polyetherimide/PEBAX/PEG 복합 중공사막을 이용한 $SO_2/CO_2/N_2$ 혼합기체 분리에 관한 연구)

  • Hyung, Chan-Heui;Park, Chun-Dong;Kim, Kee-Hong;Rhim, Ji-Won;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.404-414
    • /
    • 2012
  • In order to investigate $SO_2$ removal, PEI hollow fiber membranes were produced by a dry-wet phase inversion method. The membrane support layer on surface was coated with PEBAX1657$^{(R)}$ and PEG blending materials. Modules were prepared for the single gas permeation characteristics of composite membrane according to temperature and pressure. As a result, $SO_2$ permeance and $SO_2/N_2$ selectivity were 220~1220 GPU and 100~506 through operating condition, respectively. Moreover, $SO_2/CO_2/N_2$ mixture gas was used to compare the performance of separation properties according to temperature, pressure and retentate flow rate difference. $SO_2$ removal efficiency was increased with pressure and temperature.

Nanocomposite Water Treatment Membranes: Antifouling Prospective (수처리용 나노복합막: 방오의 관점에서)

  • Kim, Soomin;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.158-172
    • /
    • 2020
  • In the aspect of saving energy and water, facilitating the separation membrane for the water treatment has been rising recently as one of the possible solutions. However, microbial biofouling effect is the biggest obstacle that hinders reaching higher permeability over a prolonged period of nanofiltration operation. To solve this problem and fully utilize the filtration membranes with enhanced performance, largely two kinds of solutions are studied and the first and the most commonly mentioned type is the one using the silver nanoparticles. Since silver nanoparticles are important to be well tailored on membrane surface, various methods have been applied and suggested. Using silver nanoparticles however also has the drawbacks or possible toxicity risks, raising the need for other types of utilizing non silver particles to functionalize the membrane, such as copper, graphene or zinc oxides, and amine moieties. Each attempt included in either kind has produced some notable results in killing, preventing, or repelling the bacteria while at the same time, left some unsolved points to be evaluated. In this review, the effects of metal nanoparticles and other materials on the antifouling properties of water treatment membranes are summarized.

A Study on Mechanical Interfacial Properties of Copper-plated Carbon Fibers/Epoxy Resin Composites (구리도금된 탄소섬유/에폭시 수지 복합재료의 기계적 계면 특성에 관한 연구)

  • Hong, Myung-Sun;Bae, Kyong-Min;Choi, Woong-Ki;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • In this work, the electroplating of copper was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and contact angle measurements. Its mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). From the results, it was found that the mechanical interfacial properties of Cu-plated carbon fibers-reinforced composites (Cu-CFRPs) enhanced with increasing the Cu plating time, Cu content and COOH group up to Cu-CFRP-30. However, the mechanical interfacial properties of the Cu-CFRPs decreased dramatically in the excessively Cu-plated CFRPs sample. In conclusion, the presence of Cu particles on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the Cu-CFRPs, but the excessive Cu content can lead the failure due to the interfacial separation between fibers and matrices in this system.

Application of Isolated Tyrosinase Inhibitory Compounds from Persimmon Leaves (감나무 잎으로 부터 분리한 tyrosinase 억제물질의 응용)

  • Cho, Young-Je;An, Bong-Jeun;Kim, Jeung-Hoan
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.976-984
    • /
    • 2011
  • Total phenolic content was the highest in 60% ethanol extracts at 21.91 mg/g, and inhibitory activity against tyrosinase of 60% ethanol extracts was higher than ethanol extracts of other concentration. The inhibitory compounds against tyrosinase from Persimmon leaves were purified using Sephadex LH-20, MCI-gel CHP-20 column chromatography with gradient elution. Two purified compounds were isolated as a result. The chemical structures of each compound were determined and identified using $^1H$-NMR and $^{13}C$-NMR, FAB-Mass. The compounds were confirmed as (+)-gallocatechin and prodelphinidin B-3. The tyrosinase inhibitory activities of purified (+)-gallocatechin and prodelphinidin B-3 were 29.5 and 40.2%, respectively. The inhibitory activities of (+)-gallocatechin and prodelphinidin B-3 against melanin biosynthesis in melanoma cell were 32.5 and 46.7%. The safety of essence with tyrosinase inhibitory compounds from persimmon leaves was also assessed by various safety profiles. First, changes in pH (4.90~4.95) and viscosity (23,000~26,000 cP) was not detected for 60 days. Essence also showed stability against temperature and light for 60 days. All these findings suggest that extracts from persimmon leaves have a great potential as a cosmetical ingredient with a potent whitening effect.

Comparative Study on Ethanol Production with Pentose and/or Hexose by Saccharomyces cerevisiae and/or Pichia stipitis (Saccharomyces cerevisiae와 Pichia stipitis를 이용한 오탄당과 육탄당으로부터 에탄올 생산에 관한 비교연구)

  • Kim, Jung-Gon;Ahn, Jung-Hoon
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • Glucose and xylose are the most abundant materials in nature which can be used to produce ethanol by yeast fermentation. Three combinations of cultivation with glucose and xylose were carried out; separated, co-culture, and sequential fermentation with Saccharomyces cerevisiae and Pichia stipitis. In the separated fermentation, S. cerevisiae fermented glucose to produce 14.5 g/l ethanol from 29.4 g/l glucose but hardly used xylose. However, P. stipitis utilized not only glucose but also xylose to produce ethanol 11.9 g/l and 11.6 g/l from 29.4 g/l glucose and 29.0 g/l xylose, respectively. In the mixture of glucose and xylose, P. stipitis fermented both sugars, producing 21.1 g/l ethanol while S. cerevisiae fermented only glucose, producing 13.4 g/l ethanol. In the co-culture and sequential fermentation, the co-culture showed more efficient ethanol productivity with 18.6 g/l ethanol than the sequential fermentation with 12.4 g/l ethanol. To investigate the effect of nutrients in the growth of microorganisms and ethanol production, yeast nitrogen base (YNB) was used in the sequential fermentation with S. cerevisiae and P. stipitis. YNB supplemented some nutrients which S. cerevisiae used up in the broth and the culture showed increased growth rate, increased consumption of xylose, and increased ethanol productivity producing 22.5 g/l ethanol from 54.6 g/l sugar with a yield of 0.41 g/g.

Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes (수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질)

  • Park, Sukeun;Kim, Kwang Man;Lee, Young-Gi;Jung, Yongju;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.50-54
    • /
    • 2012
  • In this study, PANI and PANI/$TiO_2$ composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/$TiO_2$ composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and $TiO_2$ particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% $TiO_2$ content against aniline units showed the highest specific capacitance (626 $Fg^{-1}$) and delivered a capacitance of 286 $Fg^{-1}$ reversibly at a 100 $mVs^{-1}$ rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized $TiO_2$ particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of $TiO_2$ itself.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

Flexibility Study of Silicon Thin Film Transferred on Flexible Substrate (폴리머 기판 위에 전사된 실리콘 박막의 기계적 유연성 연구)

  • Lee, Mi-Kyoung;Lee, Eun-Kyung;Yang, Min;Chon, Min-Woo;Lee, Hyouk;Lim, Jae Sung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • Development of flexible electronic devices has primarily focused on printing technology using organic materials. However, organic-based flexible electronics have several disadvantages, including low electrical performance and long-term reliability. Therefore, we fabricated nano- and micro-thick silicon film attached to the polymer substrate using transfer printing technology to investigate the feasibility of silicon-based flexible electronic devices with high performance and high flexibility. Flexibility of the fabricated samples was investigated using bending and stretching tests. The failure bending radius of the 200 nm-thick silicon film attached on a PI substrate was 4.5 mm, and the failure stretching strain was 1.8%. The failure bending radius of the micro-thick silicon film attached on a FPCB was 2 mm, and the failure strain was 3.5%, which showed superior flexibility compared with conventional silicon material. Improved flexibility was attributed to a buffering effect of the adhesive between the silicon film and the substrate. The superior flexibility of the thin silicon film demonstrates the possibility for flexible electronic devices with high performance.

Changes of the surface hardness and the light transmittance of PET film by ion implantations (이온 주입에 의한 PET막의 표면경도변화 및 광 투과도 변화)

  • 박재원;이재형;이재상;장동욱;최병호;한준희
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.241-246
    • /
    • 2001
  • Single or dual ion implantations were performed onto the transparent polyethylene terephthalate(PET) sheet, and the surface hardness and the light transmittance in the visual-UV range were examined. Nanoindentation showed that the surface hardness was the highest at about 50 nm depth from the surface and was increased by about 3 times when nitrogen ions were implanted with energy and dose of 90 keV and $1\times10^{15}\textrm{/cm}^2$ respectively. When dual ions such as He+N and N+C ions were implanted into PET, the hardness was increased even more than the case only N ions were implanted. Especially, when PET were implanted with N+C dual ions, the surface hardness of PET increased 5 times more as compared to when implanted with N ions alone. The light at the 550 nm wavelength(visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet. implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays. It can be considered that the increase in the hardness of polymeric materials is attributed to not only cross linking but also forming hard inclusions such as hard C-N compounds, as evidenced by the formation of the highest hardness when both N and C ions are implanted onto PET.

  • PDF

The Effects of Fermentated Ephedra sinica on Obese Rats Fed by High Fat Diet (발효마황이 고지방식이로 유발된 비만 흰쥐에 미치는 효과)

  • Shin, Young-Jin;Kim, Ho-Jun;Lee, Myeong-Jong;Keum, Dong-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.4
    • /
    • pp.37-57
    • /
    • 2009
  • Objectives : This study was performed to investigate the effects of fermented Ephedra sinica (FMH) nano-extract compared Ephedra sinica (MH) on 3T3 L1 cell viability, lipid and glycometabolism, Obes rats' behavior and state-trait anxiety. Methods and materials : Each of 6 rats was divided into a normal diet, HFD, MH, and FMH. We fed a HFD group of rats a high fat diet and administered normal saline for 8 weeks. And we fed an experimental group of rats a high fat diet and administered an extract of Ephedra sinica and fermentated Ephedra sinica for 8 weeks. At the end of the experiment, the rats were sacrificed to determine their chemical composition. Ephedra sinica and fermentated Ephedra sinica was examined in effects of 3T3 L1 cell viability, lipid and glycometabolism, rats' behavior and state-trait anxiety. Results : 1. Ephedra sinica and fermentated Ephedra sinica didn't induce cytotoxicity at 3L3 L1 cell. 2. Fermentated Ephedra sinica by Lactococcus confusus inhibit $PPAR-{\gamma}$ activation and promote $TNF-{\alpha}$ activation. 3. In MH and FMH group, the body weight and FER decrease occured significantly than in HFD group. 4. No side effect of Ephedra sinica appeared in FMH group, so fermentated Ephedra sinica have a capacity of anti-anxiety. 5. Serum total cholesterol, triglyceride, HDL-cholesterol and creatine of HFD+Ephedra sinica, HFD+LO group were decreased compared with that of HFD group. Decreasing rates of sample group was significant(p<0.05). 6. In both MH and FMH group serum HDL was increased(P>0.05). 7. In MH group only TG was decreased, but in FMH group total cholesterol, TG, and glucose were decreased(P>0.05). Conclusions : Fermentated Ephedra sinica by Lactococcus confusus was superior to Ephedra sinica in capacity of anti-obesity. Further fermentated Ephedra sinica have no Ephedra sinica's side effect.