A Study on Mechanical Interfacial Properties of Copper-plated Carbon Fibers/Epoxy Resin Composites

구리도금된 탄소섬유/에폭시 수지 복합재료의 기계적 계면 특성에 관한 연구

  • Hong, Myung-Sun (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Bae, Kyong-Min (Department of Chemistry, Inha University) ;
  • Choi, Woong-Ki (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Lee, Hae-Seong (Department of Nano Advanced Materials Engineering, Jeonju University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • An, Kay-Hyeok (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Kim, Byung-Joo (Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites)
  • 홍명선 (전주기계탄소기술원 탄소밸리사업단) ;
  • 배경민 (인하대학교 화학과) ;
  • 최웅기 (전주기계탄소기술원 탄소밸리사업단) ;
  • 이해성 (전주대학교 나노신소재과) ;
  • 박수진 (인하대학교 화학과) ;
  • 안계혁 (전주기계탄소기술원 탄소밸리사업단) ;
  • 김병주 (전주기계탄소기술원 탄소밸리사업단)
  • Published : 2012.06.10

Abstract

In this work, the electroplating of copper was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and contact angle measurements. Its mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$). From the results, it was found that the mechanical interfacial properties of Cu-plated carbon fibers-reinforced composites (Cu-CFRPs) enhanced with increasing the Cu plating time, Cu content and COOH group up to Cu-CFRP-30. However, the mechanical interfacial properties of the Cu-CFRPs decreased dramatically in the excessively Cu-plated CFRPs sample. In conclusion, the presence of Cu particles on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the Cu-CFRPs, but the excessive Cu content can lead the failure due to the interfacial separation between fibers and matrices in this system.

본 연구에서는 Polyacrylonitrile (PAN)계 탄소섬유 표면에 구리도금 표면처리가 탄소섬유 강화 복합재료의 기계적 계면 특성에 미치는 영향에 관하여 관찰하였다. 탄소섬유 표면특성은 주사전자현미경, X-선 광전자 분광법, X-선 회절분석기, 접촉각 측정기로 측정하였고, 탄소섬유 강화 복합재료의 기계적 계면 물성은 층간전단강도(interlaminar shear strength, ILSS)와 파괴인성(critical stress intensity factor, $K_{IC}$)측정을 통하여 알아보았다. 실험결과로부터, 기계적 계면물성은 탄소섬유 표면에 COOH group과 도금된 구리함량이 증가됨에 따라 순차적으로 증가되는 것이 확인되었으나, 도금시간을 길게 하여 과량의 구리가 도입되었을 경우 기계적 계면 물성을 도리어 감소시키는 것으로 확인되었다. 결론적으로 구리함량이 탄소섬유 복합재료의 기계적 계면물성을 결정하는 중요 요소라 판단되나, 최적의 함량이상에서는 계면분리에 의한 물성저하의 원인이 될 수 있다.

Keywords

References

  1. M. A. Montes-moran and R. J. Young, Carbon, 40, 857 (2002). https://doi.org/10.1016/S0008-6223(01)00207-X
  2. M. M. Schwartz, Composite Materials Handbook, 2nd ed., McGraw- Hill, New-York, 1992.
  3. D. C. Davis, J. W. Wikerson, J. Zhu, and D. O. O. Ayewah, Compos. Struct., 92, 2653 (2010). https://doi.org/10.1016/j.compstruct.2010.03.019
  4. S. J. Park, in Interfacial Forces and Fields: Theory and Applications, ed. By J. P. Hsu, chap. 9, Marcel Dekker, New York (1999).
  5. D. R. Bortz, C. Merino, and I. Martin-Gullon, Comp. Part A : Appl. Sci. Manuf., 42, 1584 (2011). https://doi.org/10.1016/j.compositesa.2011.07.002
  6. X. Zhiwei, H. Yudong, S. Yuanjun, Z. Chunhua, and L. Li, J. Rare Earths, 25, 462 (2007). https://doi.org/10.1016/S1002-0721(07)60457-8
  7. S. J. Park, H. H. Kim, S. W. Choi, and J. R. Lee, Polymer (Korea), 24, 499 (2000).
  8. S. J. Park, M. K. Seo, and D. R. Lee, Carbon, 41, 2991 (2003). https://doi.org/10.1016/S0008-6223(03)00426-3
  9. X. Jincheng, Y. Hui, X. long, L. Xiaolong, and Y. Hua, Mater. Des., 25, 489 (2004). https://doi.org/10.1016/j.matdes.2004.01.011
  10. J. Rams, A. Urena, M. D. Escalera, and M. Sanchez, Comp. Part A: Appl., 38, 566 (2007). https://doi.org/10.1016/j.compositesa.2006.02.010
  11. K. S. Kim and S. J. Park, Carbon Lett., 1, 51 (2012).
  12. S. J. Park, Y. S. Jang, and J. Kawasaki, HWAHAK KONGHAK, 40, 664 (2002).
  13. S. J. Park, Y. S. Jang, J. R. Lee, and J. S. Kim, Polymer (Korea), 24, 721 (2000).
  14. E. Hage, S. F. Costa, and L. A. Pessan, J. Adhesion Sci. Technol., 11, 1491 (1997). https://doi.org/10.1163/156856197X00390
  15. T. S. Anirudhan and P. S. Suchithra, J. Ind. Eng. Chem, 16, 130 (2010). https://doi.org/10.1016/j.jiec.2010.01.006
  16. X. Qu, J. Zheng, and Y. Zhang, J. Colloid Interface Sci, 309, 429 (2007). https://doi.org/10.1016/j.jcis.2007.01.034
  17. K. R. Ko, B. H. Yang, and S. K. Ryu, HWAHAK KONGHAK, 41, 307 (2003).
  18. A. Fukunaga and S. Ueda, Composites Sci. & Tech., 60, 249 (2000). https://doi.org/10.1016/S0266-3538(99)00118-9
  19. J. Xie, D. Xin, H. Cao, C. Wang, Y. Zhao, L. Yao, F. Ji, and Y. Qiu, Surface & Coatings Technology., 206, 191 (2011). https://doi.org/10.1016/j.surfcoat.2011.04.016
  20. N. Dilsiz and L. P. Wightman, Carbon, 37, 1105 (1999). https://doi.org/10.1016/S0008-6223(98)00300-5
  21. J. M. Charrier, Polymeric Materials and Processing, Hanser, Munich, 1990.
  22. S. J. Park, B. J. Kim, and J. M. Rhee, Polymer (Korea), 27, 235 (2003).
  23. S. J. Park and J. R. Lee, J. Mater. Sci., 33, 647 (1998). https://doi.org/10.1023/A:1004373208656
  24. S. Abraham, b. C. Pai, K. G. Satyanarayana, and V. K. Vaidyan, J. Mater, Sci., 25, 2839 (1990). https://doi.org/10.1007/BF00584890
  25. F. Lantelme and A. Seghiouer, J. Appl. Electrochem., 28, 907 (1998). https://doi.org/10.1023/A:1003404118601
  26. T. Kimura, A. Ishiguro, A. Andou, and K. Fujita, J. Power Soures., 85, 149. https://doi.org/10.1016/S0378-7753(99)00394-8
  27. S. D. Gardner, C. S. K. Singamsetty, G. L. Booth, G. R. He, and C. U. Pittman, Carbon, 33, 587 (1995). https://doi.org/10.1016/0008-6223(94)00144-O
  28. S. J. Park and Y. S. Jang, J. Colloid Interface Sci., 263, 170, (2003). https://doi.org/10.1016/S0021-9797(03)00290-X
  29. B. K. Kim, S. K. Ryu, B. J. Kim, and S. J. Park, J. Colloid Interface Sci., 302, 695 (2006). https://doi.org/10.1016/j.jcis.2006.07.028
  30. S. J. Park, M. H. Kim, J. R. Lee, and S. W. Choi, J. Colloid Interface Sci., 228, 287 (2000). https://doi.org/10.1006/jcis.2000.6953
  31. S. J. Park, T. J. Kim, J. R. Lee, S. K. Hong, and Y. K. Kim, Polymer (Korea), 24, 326 (2000).
  32. S. J. Park, J. S. Oh, and D. H. Suh, J. Korean Ind. Eng. Chem., 14, 586 (2003)
  33. S. J. Park, J. S. Oh, and D. H. Suh, Korean Chem. Eng. Res., 42, 102 (2004).
  34. S. B. Rho and M. A. Lim, Polymer (Korea), 23, 662 (1999).
  35. N. Hameed, S. P. Thomas, R. Abraham, and S. Thoams, Express. Polym. Lett., 1, 345 (2007). https://doi.org/10.3144/expresspolymlett.2007.49
  36. E. Chibowski and R. Perea-Carpio, Adv. Colloid Interface Sci., 98, 245 (2002). https://doi.org/10.1016/S0001-8686(01)00097-5
  37. S. J. Park, M. K. Seo, and K. Y. Rhee, Mater. Sci. Eng., 356, 219 (2003). https://doi.org/10.1016/S0921-5093(03)00134-5
  38. A. Fukunaga, S. Ueda, and M. Magumo, J. Mater. Sci., 34, 2851 (1999). https://doi.org/10.1023/A:1004679200908