• Title/Summary/Keyword: Nano crystal Si

Search Result 82, Processing Time 0.031 seconds

Selective growth of GaN nanorods on the top of GaN stripes (GaN stripe 꼭지점 위의 GaN 나노로드의 선택적 성장)

  • Yu, Yeonsu;Lee, Junhyeong;Ahn, Hyungsoo;Shin, Kisam;He, Yincheng;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • GaN nanorods were grown on the apex of GaN stripes by three dimensional selective growth method. $SiO_2$ mask was partially removed only on the apex area of the GaN stripes by an optimized photolithography for the selective growth. Metallic Au was deposited only on the apex of the GaN stripes and a selective growth of GaN nanorods was followed by a metal organic vapor phase epitaxy (MOVPE). We confirmed that the shape and size of the GaN nanorods depend on growth temperature and flow rates of group III precursor. GaN nanorods were grown having a taper shape which have sharp tip and triangle-shaped cross section. From the TEM result, we confirmed that threading dislocations were rarely observed in GaN nanorods because of the very small contact area for the selective growth. Stacking faults which might be originated from a difference of the crystal facet directions between the GaN stripe and the GaN nanorods were observed in the center area of the GaN nanorods.

The dependence of porosity and crystallity on photoluminescence properties of Er doped $Al_2O_3/SiO_2$ films prepared by sol-gel method (졸-겔 방법으로 제조된 Er doped $Al_2O_3/SiO_2$ 필름의 다공성과 결정성에 대한 광 발광 특성)

  • 권정오;김재홍;석상일;정동운
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.137-137
    • /
    • 2003
  • Optical amplificator have been used to compensate the losses in the optical signal transmission and processing. Today, there has been increasing demand for the very low cost optical amplifier. Sol-gel offers considerable potential both low cost manufacture, and for great flexibility in materials composition and structure. In addition, the sol-gel process is a very attractive method for producing porous materials with controlled structure. In this work, we present the potoluminescence properties of Er doped A1$_2$O$_3$/SiO$_2$ films. Erbium doped alumina nano sol was prepared by Al(NO$_3$)$_3$.9$H_2O$ and Er(NO$_3$)$_3$.5$H_2O$ through hydrolysis and peptization, and then GPS (3-Glycidoxypropyltrimethoxysilane) was added into Er doped alumina nano sol for organic- inorganic hybridization. Er doped A1$_2$O$_3$/SiO$_2$ film was obtained by spin coating, dip coating and thermal treatment from 30$0^{\circ}C$~120$0^{\circ}C$, and there were crack-free after thermal treatment. The thickness of film was measured SEM, and the porosity of film was characterized by BET and TGA. The crystal phase of Er doped A1$_2$O$_3$/SiO$_2$ were determined by XRD. Finally, the photoluminescence properties of Er doped A1$_2$O$_3$/SiO$_2$ films will be discuss with the consideration of porosity and crystallity.

  • PDF

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic (MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Shin, Hyo Soon;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

Dark-field Transmission Electron Microscopy Imaging Technique to Visualize the Local Structure of Two-dimensional Material; Graphene

  • Na, Min Young;Lee, Seung-Mo;Kim, Do Hyang;Chang, Hye Jung
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • Dark field (DF) transmission electron microscopy image has become a popular characterization method for two-dimensional material, graphene, since it can visualize grain structure and multilayer islands, and further provide structural information such as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present microstructure of graphene, particularly, using DF imaging. High-angle grain boundary formation wass observed in heat-treated chemical vapor deposition-grown graphene on the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by strain around multilayer islands. Upon the crystal orientation between layers the multilayer islands were categorized into the oriented one and the twisted one, and their local structure were compared. In addition information from each diffraction spot in selected area diffraction pattern was summarized.

A Study of Thermoelectric Material for Waste Heat Recovery (배열회수 발전용 열전소재 기초연구)

  • Kim, Ho-Young;Kim, Cham
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.175-180
    • /
    • 2008
  • Thermoelectric materials convert temperature difference to electric power for power generation and vice versa for refrigeration. Recent advances in enhancing the thermoelectric figure-of-merit shed light on efficient power generation from the waste heat available in industries and vehicles. Nanoscale phenomena with both nanoscale constituent-embedded bulk samples and nanoscale materials proving enhanced thermoelectric performance have been widely reviewed. Bulk materials of crystal-orientation and nano-structured particle embedding seem to promise a higher thermoelectric figure-of-merit and an effective power generation application. As a preliminary study, Si-Ge nanocomposite was prepared with spark plasma sintering method and its properties were examined.

  • PDF

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF

Effect of Oxygen Pressure on the Structure Properties of Mg0.5Zn0.5O Thin Films Grown by Pulsed Laser Deposition (PLD 법으로 증착된 Mg0.5Zn0.5O 박막의 산소 분압 변화에 따른 구조적 특성)

  • Kim, Chang-Hoi;Kim, Hong-Seung;Lee, Jong-Hoon;Park, Mi-Seon;Pin, Min-Wook;Lee, Won-Jae;Jang, Nak-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.717-722
    • /
    • 2012
  • In this work, we study on the effects of the oxygen pressure on the structural and crystalline of MgZnO thin films. MgZnO thin films were deposited on p-Si (111) substrates by using pulsed laser deposition. The X-ray diffraction analysis and energy-dispersive X-ray results revealed that as the oxygen pressure increased and Mg content in the MgZnO films decreased. Also Crystal structure was changed from cubic rock salt to hexagonal wurtzite. Alpha step and atomic force microscopy results showed that the thickness of the films are about 100 nm, and it has been found that the MgZnO (002) preferred orientation were deposited with increasing the oxygen pressure. Therefore, the effect of the preferred orientation, the crystallization grew in the form of the columnar; Grain size and RMS of the films were increased with increasing oxygen pressure.

Thermal Stability Enhancement of Nickel Monosilicides by Addition of Pt and Ir (Pt와 Ir 첨가에 의한 니켈모노실리사이드의 고온 안정화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.27-36
    • /
    • 2006
  • We fabricated thermally evaporated 10 nm-Ni/(poly)Si, 10 nm-Ni/l nm-Ir/(poly)Si and 10 nm-Ni/l nm-Pt/(poly)Si films to investigate the thermal stability of nickel monosilicides at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides of 50 nm-thick were formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to examine sheet resistance. A scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An X-ray diffractometer and an Auger depth profiler were used for phase and composition analysis, respectively. Nickel silicides with platinum have no effect on widening the NiSi stabilization temperature region. Nickel silicides with iridium farmed on single crystal silicon showed a low resistance up to $1200^{\circ}C$ while the ones formed on polycrystalline silicon substrate showed low resistance up to $850^{\circ}C$. The grain boundary diffusion and agglomeration of silicides lowered the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.

  • PDF

Characterization and synthesis of aqueous pink-red ceramic ink for digital inkjet printing (잉크젯 프린팅용 pink-red 수계 무기잉크의 제조 및 특성평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Han, Kyu-Sung;Cho, Woo-Suk;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2015
  • Ceramic ink-jet printing technology in art tiles, decorated tablewares and other porcelain products has many advantages of fast and precision printing of various images with high efficiency and low cost. For the application to ink-jet printing, ceramic ink requires a stable dispersibility with nano-sized pigments. In this paper, characteristics of pink-red aqueous ceramic ink for ink-jet printing was demonstrated. $CaCr_{0.1}Sn_{0.8}SiO_5$ pigment was synthesized using solid state reaction and deagglomerated using attrition milling. The aqueous ceramic ink contains 10 wt% of the obtained $CaCr_{0.1}Sn_{0.8}SiO_5$ nanopigment with 0.4 wt% of sodium dodecyl sulfate (SDS) as a dispersion agent. Viscosity of $CaCr_{0.1}Sn_{0.8}SiO_5$ aqueous ceramic ink was adjusted using 0.18 wt% of polyvinyl alcohol (PVA) for a suitable jetting from the nozzle. The prepared pink-red ceramic ink showed a good jetting property with formation of a single sphere-shaped droplet after $180{\mu}s$ without a tail and satellite droplet.