DOI QR코드

DOI QR Code

Selective growth of GaN nanorods on the top of GaN stripes

GaN stripe 꼭지점 위의 GaN 나노로드의 선택적 성장

  • Yu, Yeonsu (Department of Applied Sciences, Korea Maritime and Ocean University) ;
  • Lee, Junhyeong (Department of Applied Sciences, Korea Maritime and Ocean University) ;
  • Ahn, Hyungsoo (Department of Applied Sciences, Korea Maritime and Ocean University) ;
  • Shin, Kisam (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • He, Yincheng (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Yang, Min (Department of Applied Sciences, Korea Maritime and Ocean University)
  • 유연수 (한국해양대학교 응용과학과) ;
  • 이준형 (한국해양대학교 응용과학과) ;
  • 안형수 (한국해양대학교 응용과학과) ;
  • 신기삼 (창원대학교 나노신소재공학과) ;
  • ;
  • 양민 (한국해양대학교 응용과학과)
  • Received : 2014.06.27
  • Accepted : 2014.07.21
  • Published : 2014.08.31

Abstract

GaN nanorods were grown on the apex of GaN stripes by three dimensional selective growth method. $SiO_2$ mask was partially removed only on the apex area of the GaN stripes by an optimized photolithography for the selective growth. Metallic Au was deposited only on the apex of the GaN stripes and a selective growth of GaN nanorods was followed by a metal organic vapor phase epitaxy (MOVPE). We confirmed that the shape and size of the GaN nanorods depend on growth temperature and flow rates of group III precursor. GaN nanorods were grown having a taper shape which have sharp tip and triangle-shaped cross section. From the TEM result, we confirmed that threading dislocations were rarely observed in GaN nanorods because of the very small contact area for the selective growth. Stacking faults which might be originated from a difference of the crystal facet directions between the GaN stripe and the GaN nanorods were observed in the center area of the GaN nanorods.

3차원적 선택적 결정 성장 방법에 의해 GaN stripe 구조의 꼭지점 부분에만 GaN 나노로드를 성장하였다. GaN stripe의 꼭지점 부분의 $SiO_2$ 만을 최적화된 포토리소그라피 공정을 이용하여 제거하고 이를 선택적 결정 성장을 위한 마스크로 사용하였다. $SiO_2$가 제거된 꼭지점 부근에만 Au 금속을 증착하고, metal organic vapor phase epitaxy(MOVPE) 방법에 의해 GaN stripe의 꼭지점 부분에만 GaN 나노로드의 선택적 성장을 실시하였다. GaN 나노로드의 형상과 크기는 결정 성장 온도와 III족 원료의 공급량에 의해 변화가 있음을 확인하였다. Stripe 꼭지점에 성장된 GaN 나노로드는 단면이 삼각형형태를 가지고 있으며 끝으로 갈수록 점점 폭이 좁아지는 테이퍼 형상을 가지며 성장되었다. TEM 관측 결과, 매우 좁은 영역에서만 선택적 결정 성장이 이루어졌기 때문에 GaN 나노로드에서 관통전위(threading dislocations)는 거의 관찰되지 않음을 확인하였다. 선택성장이 시작되는 부분의 결정면과 GaN 나노로드의 성장방향의 결정면 방향의 차이에 기인하는 적층결함(stacking faults)들이 GaN 나노로드의 중심영역에서 생성되는 것을 관찰할 수 있었다.

Keywords

References

  1. K.P. O'Donnell, R.W. Martin and P.G. Middleton, "Origin of luminescence from InGaN diodes", Phys. Rev. Lett. 82 (1999) 237. https://doi.org/10.1103/PhysRevLett.82.237
  2. J.I. Pankove and T.D. Moustakes, "Gallium Nitride II: Semiconductor and semimetals", Academic Press, New York (1999) 57.
  3. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, "One-dimensional nanostructures: Synthesis, characterization, and applications", Adv. Mater. 15 (2003) 353. https://doi.org/10.1002/adma.200390087
  4. S. Kobayashi, S. Nonomura, T. Ohmori, K. Abe, S. Hirata, T. Uno, T. Gotoh and S. Nitta, "Optical and electrical properties of amorphous and microcrystalline GaN films and their application to transparent TFT", Appl. Surf. Sci. 113/114 (1997) 480. https://doi.org/10.1016/S0169-4332(96)00872-0
  5. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures", J. Appl. Phys. 85 (1999) 3222. https://doi.org/10.1063/1.369664
  6. F.A. Ponce and D.P. Bour, "Nitride-based semiconductors for blue and green light-emitting devices", Nature 386 (1997) 351. https://doi.org/10.1038/386351a0
  7. H. MorKoc and S.N. Mohammand, "High-luminosity blue and blue-green gallium nitride light-emitting diodes", Science 267 (1995) 51. https://doi.org/10.1126/science.267.5194.51
  8. L.T. Romano and T.H. Myers, "The influence of inversion domains on surface morphology in GaN grown by molecular beam epitaxy", Appl. Phys. Lett. 71 (1997) 3486. https://doi.org/10.1063/1.120367
  9. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto and K. Kishino, "Self-organization of GaN/$Al_{0.18}Ga_{0.82}N$ multi-layer nano-columns on (0001) $Al_2O_3$ by RF molecular beam epitaxy for fabricating GaN quantum disks", J. Cryst. Growth 189/190 (1998) 138. https://doi.org/10.1016/S0022-0248(98)00188-2
  10. I.M. Tiginyanu, V.V. Ursaki, V.V. Zalamai, S. Langa, S. Hubbard, D. Pavlidis and H. Foll, "Luminescence of GaN nanocolumns obtained by photon-assisted anodic etching", Appl. Phys. Lett. 83 (2003) 1551. https://doi.org/10.1063/1.1605231
  11. Yang, Peidong and Charles M. Lieber, "Nanorod-super-conductor composites: A pathway to materials with high critical current densities", Science 273 (1996) 1836. https://doi.org/10.1126/science.273.5283.1836
  12. W.I. Yun, D.W. Jo, J.E. Ok, H.S. Jeon, G.S. Lee, S.K. Jung, S.M. Bae, H.S. Ahn and M. Yang, "Formation of GaN microstructures using metal catalysts on the vertex of GaN pyramids", J. Korean Cryst. Growth Cryst. Technol. 21(3) (2011) 110. https://doi.org/10.6111/JKCGCT.2011.21.3.110
  13. G. Lee, Y.S. Woo, J.E. Yang, D. Lee, C.J. Kim and M.H. Jo, "Directionally integrated VLS nanowire growth in a local temperature gradient", Angewandte Chemie International Edition 48.40 (2009) 7366. https://doi.org/10.1002/anie.200902451
  14. R.S. Wagner and W.C. Ellis, "Vapor-liquid-solidmechanism of single crystal growth", Applied Physics Letters 4(5) (1964) 89. https://doi.org/10.1063/1.1753975
  15. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell jand C.M. Lieber, "Controlled growth and structures of molecular-scale silicon nanowires", Nano Lett. 4.3 (2004) 433. https://doi.org/10.1021/nl035162i
  16. S. Kodambaka, J. Tersoff, M.C. Reuter and F.M. Ross, "Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires", Physical Review Letters 96.9 (2006) 096105. https://doi.org/10.1103/PhysRevLett.96.096105

Cited by

  1. Selective area growth of micro-sized AlGaN array structures on GaN stripes vol.25, pp.5, 2015, https://doi.org/10.6111/JKCGCT.2015.25.5.182