• Title/Summary/Keyword: Nano Metal Powder

Search Result 151, Processing Time 0.023 seconds

Formation of Al3Ti From Mechanically Alloyed Hyper-Peritectic Al-Ti Powder (기계적 합금화법으로 제조된 과포정 Al-Ti 합금에서 Al3Ti 형성에 관한 연구)

  • Kim, Hye-Sung;Suhr, Dong-Soo;Kim, Gyeung-Ho;Kum, Dong-Wha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Mechanical alloying is an effective process to finely distribute inert dispersoids in an Al-TM(TM is a transition metal) system. It has been considered that high melting point aluminides are formed by precipitation from supersaturated Al(Ti) powder. This analysis is based on the fact that much higher content of TM than the solubioity can be dissolved in alpha aluminum during the high energy ball milling. Thus, decomposition behavior of Ti in the Al(Ti) was considered very important. But it is confirmed that the higher portion of Ti than Al(Ti) solid solution is existed as nano-sized Ti particles in the MA powders by high energy ball nilling from the XRD spectrum and TEM analysis in this study. Therefore, the role of undissolved TM particles affect the formation of aluminides should be suitably considered. In this study, we present experimental observation on the formation of $Al_3Ti$ fron mechanical alloyed Al-Ti alloys in the hyperperitectic region. This study showed that, in the mechanically alloyed Al-20wt%Ti specimen, intermediate phase of cubic $Al_3Ti$ and tetragonal $Al_{24}Ti_8$ formed at $300{\sim}400^{\circ}C$ and $400{\sim}500^{\circ}C$, respectively, before the MA state reaches to equilibrium at higher temperatures. The formation behavior of $Ll_2-Al_3Ti$ is interpreted by interdiffusion of Al and Ti in solid state based on the fact that large amount of nano-sized Ti particles exist in the milled powder. Present analysis indicated undissolved Ti particles of nanosize should have played an important role initiation the formation of $Al_3Ti$ phase during annealing.

  • PDF

Study of Synthesis and Magnetic Properties of Ni and Ni-Cu Nano Metal Powders Prepared by the Pulsed Wire Evaporation(PWE) Method (전기폭발법에 의한 Ni 및 Ni-Cu 나노 금속 분말의 제조와 자기적 특성연구)

  • 박중학;엄영랑;김경호;김흥희;이창규
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Nanocrystalline materials of Ni and Ni-Cu alloy have been synthesized by the pulsed wire evaporation (PWE) method and these abnormal magnetic properties in the magnetic ordered state have been characterized using both VSM and SQUID in the range of high and low magnetic fields. Ni and Ni-Cu particles with an average size of 20 to 80 nm were found to influence magnetic hysterisis behavior and the results of powder neutron diffraction patterns and saturation magnetization curves are shown to indicate the absence of the NiO phase. The shifted hysterisis loop and irreversibility of the magnetization curve in the high field region were observed in the magnetic-ordered state of both Ni and Ni-Cu. The virgin magnetization curve for Ni slightly spillover on the limited hysterisis loop ($\pm$20kOe). This irreversibility in the high field of 50 kOe can be explained by non-col-linear behavior and the existence of the metastable states of the magnetization at the surface layer (or core) of the particle in the applied magnetic field. Immiscible alloy of Cu-Ni was also found to show irreversibility having two different magnetic phases.

Fabrication of Injection Molded Fe-50%Ni Sintered Bodies (사출성형된 Fe-50%Ni 소결체의 제조)

  • Kim Ki-Hyun;Yoon Hyeong-Chul;Choi Chul-Jin;Lee Byong-Taek
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.472-476
    • /
    • 2004
  • The Fe-Ni compact bodies were fabricated using Fe-Ni mixed powders with 50 nm in diameter by injection molding process. The relationship between microstructure and material properties was characterized with respect to the volume ratio of powder/binder and sintering temperature with SEM and TEM. In the compact body having the volume percent ratio of 45(Fe-Ni) : 55(binder), which was sintered at $900^{\circ}C$ the values of relative density and hardness were low about 97.7% and 277.1 Hv, respectively. Using the composition of 50(Fe Ni) : 50(binder) and sintered at $900^{\circ}C$, the values of relative density and hardness were 98.5%, 294.4 Hv, respec-tively. The grain size of sintered bodies strongly depended on the sintering temperature. In both samples sintered at $600^{\circ}C$ and $900^{\circ}C$, the average grain sizes were about 150 nm and 500 nm in diameter, respectively.

MicrostructuraL Characteristics During Hydrogen Desorption of Mechanical Milled TiH2 (기계적 합금화된 TiH2의 수소방출에 따른 미세조직 특성)

  • Jung S.;Jung Hyun-Sung;Ahn Jae-Pyoung;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.199-204
    • /
    • 2006
  • We manufactured the metal hydrides of $(Ti_{0.88}Mg_{0.12})H_2$ using a very easy and cheap way that Ti-12%Mg blending powder was mechanically milled with liquid milling media such as isopropyl alcohol ($C_3H_8O$, containing oxygen) and hexane ($C_6H_{14}$, no oxygen) as hydrogen source. The $(Ti_{0.88}Mg_{0.12})H_2$ synthesized in isopropyl alcohol contained the high oxygen of 11.2%, while one in hexane had the low oxygen content of 0.7%. Such a difference of oxygen content affected the dehydriding behavior, phase transformation, and microstructural evolution at high temperature, which was investigated through X-ray diffraction and DSC measurements, and electron microscope observations.

Preparation of Iron Nano-particle by Slurry Reduction Method from Leaching Solution of Spent Nd magnet (폐네오디뮴 자석 침출용액으로부터 Slurry 환원법을 이용한 철 Nano 분말 제조)

  • Ahn, Jong-Gwan;Gang, Ryunji;You, Haebin;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.22-29
    • /
    • 2014
  • Recycling process of iron should be developed for efficient recovery of neodymium (Nd), rare metal, from acid-leaching solution of Nd magnet. In this study, $FeCl_3$ solution as iron source was used for preparation of iron nano particles with the condition of various factors, such as, reductant, and surfactant. $Na_4P_2O_7$ and Polyvinylpyrrolidone (PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride ($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed by using XRD, SEM for measuring shape and size. Iron nano particles were prepared at the ratio of 1:5 (Fe (III) : $NaBH_4$). Size and shape of iron particles were round-form and 50 ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4P_2O_7$ was negative value, which was good for dispersion of metal particle. When $Na_4P_2O_7$ (100 mg/L), PVP($FeCl_3:PVP$ = 1 : 4, w/w) and Pd($FeCl_3:PdCl_2$ = 1 : 0.001, w/w) were used, iron nano particles which were round-shape, well-dispersed and near 100 nm-sized range. In this condition, $FeCl_3$ solution changed with spent Nd leachate solution, and then it is possible to be made round-formed iron nano particles at pH 9 and at the reaction bath over 20 L which is not include any surfactant.

The Study on Structural Change and Improvement of Electrochemical Properties by Co-precipitation Condition of Li[Ni0.8Co0.15Al0.05]O2 Electrode (Li[Ni0.8Co0.15Al0.05]O2 전극의 공침 조건을 통한 구조적 변화와 전기적 특성의 향상 고찰)

  • Im, Jung-Bin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.98-103
    • /
    • 2011
  • [ $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ ]cathode material for lithium secondary battery is obtained using co-precipitation method. To determine the optimal metal solution concentration value, the CSTR coprecipitation was carried out at various concentration values(1-2 mol/L). The surface morphology of coated samples was characterization by SEM(scanning electron microscope) and XRD (X-Ray Diffraction)analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the concentration of metal solution. such data is very helpful in determining the optimal content of metal solution concentration to enhancing electrochemical property by adjusting powder size distribution and crystal structure.

The Characteristic Study on the Extraction of a Co Ion in the Metal Ion Implanter (금속이온 주입기에서의 Co 이온의 인출 특성 연구)

  • Lee, Hwa-Ryun;Hong, In-Seok;Trinh, Tu Anh;Cho, Yong-Sub
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.236-243
    • /
    • 2009
  • Proton Engineering Frontier Project (PEFP) has supplied the metal ions to users by using an installed metal ion implanter of 120 keV. At present a feasibility study is being performed for a cobalt ion implantation. For a cobalt ion extraction we studied to sustain the high temperature($648^{\circ}C$) for metal ions vaporization from a cobalt chloride powder by using an alumina crucible in the ion source. The temperature condition of the crucible was satisfied with the plasma generation at the arc current of 120V and EHC power of 250W. The extracted beam current of $Co^+$ ions was dependent on the arc current in the plasma. The maximum beam current was $100{\mu}A$ at 0.18A of the arc current. The 3 peak currents of the extracted ions such as $Co^+$, $CoCl^+$ and $Cl^+$ were obtained by adjusting a mass analyzing magnet and the $Co^+$ ion beam peak current fraction as around 70% in the sum of the peak currents. The fluence of the implanted cobalt ions at the $10{\mu}A$ of the beam current and 90 minutes of the implantation time into an aluminum sample as measured around $1.74{\times}10^{17}#/cm^2$ by a quantitative analysis method of RBS (Rutherford Backscattering Spectrometry).

Fabrication of Magnesium Alloy Foam Through $TiH_2$ and $CaCO_3$ ($TiH_2$$CaCO_3$를 이용한 마그네슘 합금의 제조)

  • Seo, Chang-Hwan;Seong, Hwan-Goo;Yang, Dong-Hui;Park, Soo-Han;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.6
    • /
    • pp.267-271
    • /
    • 2006
  • Metal foam is a class of attractive materials, which exhibits unique combinations of physical, mechanical, thermal, electrical and acoustic properties. In particular, it is light and good at absorbing energy, which makes it attractive in automotive and aerospace applications weight is critical. In this paper, the Mg alloy foam was prepared by melt foaming method by addition of calcium as thickening agent, and $TiH_2$ or $CaCO_3$ powder as blowing agent. The macrostructural observation of foamed Mg showed that the pore structures of Mg alloy foam made by $CaCO_3$ as blowing agent were much better than that of foams made by $TiH_2$ as blowing agent. In addition, this paper showed the possible reason of fabrication magnesium alloy foam in proportion to blowing agent and the porosity range was about 40 to 76% as results value.

Photoluminescence Characteristics of $Y_3Al_5O_{12}:Eu^{3+}$ Nano-Phosphors by Combustion Method (연소합성법으로 제작한 $Y_3Al_5O_{12}:Eu^{3+}$ 나노형광체의 광학적 특성)

  • Kwak, Hyun-Ho;Kim, Se-Jun;Park, Yong-Seo;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.406-407
    • /
    • 2008
  • For this study, Yttrium aluminum garnet (YAG) particles doped $Eu^{3+}$ ions were prepared via the combustion process using the 1:1 ratio of metal ions to reagents. The characteristics of the synthesized nano powder were investigated by means of X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and photoluminescence (PL). The various YAG peaks, with the (420) main peak, appeared at all sintering temperature XRD patterns. The YAG phase crystallized with results that are in good agreement with the JCPDS diffraction file 33-0040. The SEM image showed that the resulting YAG:Eu powders had larger sizes with the increse in the sintering temperature. The grain size was about 50nm at $1000^{\circ}C$. The PL intensity of $Eu^{3+}$ has the line peaks of 598, 610, 632nm and has main peak at 591nm.

  • PDF

Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0~0.15)(M=Co, Fe) Alloy Powder for SOFC Anode (SOFC anode용 나노구형 Ni(1-x)-M(x=0~0.15)(M=Co, Fe) alloy 분말 합성 및 그 특성)

  • Lee, Min-Jin;Choi, Byung-Hyun;Ji, Mi-Jung;An, Young-Tae;Hong, Sun-Ki;Kang, YoungJin;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.