• Title/Summary/Keyword: Nakdong Basin

Search Result 505, Processing Time 0.022 seconds

Development for Wetland Network Model in Nakdong Basin using a Graph Theory (그래프이론을 이용한 낙동강 유역의 습지네트워크 구축모델 개발)

  • Rho, Paikho
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.397-406
    • /
    • 2013
  • Wetland conservation plan has been established to protect ecologically important wetlands based on vegetation integrity, spatial distribution of endangered species, but recently more demands are concentrated on the landscape ecological approaches such as topological relationship, neighboring area, spatial arrangements between wetlands at the broad scale. Landscape ecological analysis and graph theory are conducted to identify spatial characteristics related to core nodes and weak links of wetland networks in Nakdong basin. Regular planar model, which is selected for wetland networks, is applied in the Nakdong basin. The analysis indicates that 5 regional groups and 4 core wetlands are extracted with 15km threshold distance. The IIC and PC values based on the binary and probability models suggest that the wetland group C composed of main stream of Nakdong river and Geumho river is the most important area for wetland network. Wetland conservation plan, restoration projected of damaged and weak links between wetlands should be proposed through evaluating the node, links, and networks from wetlands at the local to the regional scale in Nakdong basin.

Occurrence of X-ray Contrast Media (Iopromide) in the Nakdong River Basin (낙동강 수계에서의 X-선 조영제(Iopromide)의 분포 특성)

  • Yoom, Hoon-Sik;Son, Hee-Jong;Ryu, Dong-Choon;Jang, Seung-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1131-1138
    • /
    • 2012
  • The aims of this study were to investigate and confirm the occurrence and distribution patterns of iodinated X-ray contrast media (iopromide) in Nakdong river basin (mainstream and its tributaries). Iopromide was detected in 16 sampling sites. The concentration levels of iopromide on February 2011 and on October 2011 in surface water samples ranged from not detected (ND) to 1481.1 ng/L and ND to 1168.2 ng/L, respectively. The highest concentration level of iopromide in the mainstream and tributaries in Nakdong river were Goryeong and Jincheon-cheon, respectively. The sewage treatment plants (STPs) along the river affect the iopromide levels in river and the iopromide levels decreased with downstream because of dilution effects.

Development of the Estimation Model on Daily Pollutant Loads for the Watersheds in the Nakdong River Basin I. Correction and Verification for the Model (낙동강 유역에 대한 일별 유달부하량 산정모델개발 I. 모델식의 보정 및 검증)

  • Yoon, Young-Sam;Kim, Moon-Soo;Yu, Jae-Jung;Lee, Hae-Jin;Lee, Jun-Bae;Yang, Sang-Yong
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.203-210
    • /
    • 2007
  • The delivery load data obtained from Nakdong river basin are used for developing the model estimating the daily delivery load on the main side streams of Nakdong River. The developed model assesses the daily contamination loads of the main thirteen side streams that contribute to the main stream of Nakdong river. It is developed that the model using the simplified equation that can estimate the daily delivery loads on the side main streams of Nakdong river for a period of having no data of the water quality and flow. The developed model for estimating the daily delivery loads from the main side streams in Nakdong river basin on each item such as BOD, TN, and TP is expressed as Daily delivery load ($\frac{kg}{day}$) = Production load $(\frac{kg}{day}){\times}(1-{\alpha}){\times}(\frac{daily\;runoff}{average\;runoff\;per\;year}){\gamma}$. The estimated values obtained by using the model are almost fit to the calculated values (real data) that have been acquired from the thirteen main side streams in Nakdong river basin. The correlation coefficient values, R, that indicate the correlation between the estimated and the calculated show over 0.7 that mean the estimated values from the used model are adapted to the real data except TN values of Nam-river, Hwang-river, Gam-river, We-river. Especially, the correlation of TP values between the estimated and the calculated implies quite a creditable data to use.

Flow Duration Curve Analysis for Nakdong River Basin using TMDL Flow Data (오염총량관리 유량측정자료를 이용한 낙동강 유역 유황분석)

  • Kim, Jae Chul;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.332-338
    • /
    • 2007
  • In this study the flow duration curves for Nakdong river basin are analyzed. The TANK model is used as a hydrologic simulation model whose parameters are estimated from 8-day intervals flow data measured by NIER Nakdong River Water Environment Laboratory. As a comparison result between generated natural and present river flow, the present river flow is higher than the natural river flow in the up- and mid-stream of Nakdong river, while the present river flow is lower than the natural river flow in the down stream of Nakdong river.

Development and Application of the Grid-Distributed Model for Contribution Rate Analysis on Non-point Source Pollution According to Landuse (토지피복별 비점부하량 기여율 해석을 위한 분포형 모델 개발 및 적용)

  • Ahn, Jung-Min;Jung, Kang-Young;Kim, Shin;Lee, Hae-Jin;Shin, Suk-Ho;Yang, Duk-Seok;Shin, Dongseok;Na, Seung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.78-89
    • /
    • 2017
  • Water quality monitoring network data is being affected continuously due to non-point source pollution arising from agricultural land located on the Gwangsancheon outlet in the Nakdong River basin. In this study, we have performed analysis of water quality monitoring system, water quality pattern using SOM and water quality in the Gwangsancheon for sub-basin located at Gisan-myeon in the Nakdong River basin. We have developed and applied the model to estimate the runoff and non-point source loading. As a result of SOM pattern, the effect of non-point source pollution was the largest in the paddy fields and fields. As a result of the developed model, we found contribution rate and reduction rate for non-point source loading according to change of landuse because the reduction effect of nonpoint pollutants was 20.9% of SS, 9.9% of TN, 21.2% of TP and 8.9% of TOC depending on the landuse change.

Evapotranspiration and Water Balance in the Basin of Nakdong River (낙동강유역의 증발산량과 물수지)

  • 조희구;이태영
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.81-92
    • /
    • 1975
  • Calculation of the monthly water balance for Nakdong River basin for the period from 1958 to 1968 is made by determining three components independently: precipitation, runoff and evapotranspiration. The areal precipitation is computed by the Thiessen method using the records of nine meteorological stations in the basin, and the runoff is the flow gauged at Jindong which is located on the most downstream. For the computation of evapotranspiration, the Morton method is adopted because this method is relatively fit best in the calculation of water balance among the Morton, Penman and Thornthwaite methods. The values of Morton evapotransp iration are corrected by the factor of 0.82 in the basin in order to bring the error to zero. The areal evapotranspiration is the arithmetic mean of the Morton estimates at the stations. Mean water balance components in the Nakdong river basin are 1117.0mm, 600.6mm and 516.4m for precipitation, runoff and evapotranspiration respectively. Accordingly, the mean runoff ratio comes out to be 0.54. The smallest values of runoff coefficient are due for Daegu area, while the largest ones are for the southwest of the basin with the higher rainfall and high elevations there. The amount of runoff obtained by both Thornthwaite and Budyko methods for water balance computations indicate 59 and 60 per cent of actual values which are lower than the expected. An attempt is made to find the best reliable rainfall-runoff relation among the four methods proposed by Schreiber, 01'dekop, Budyko and Sellers. The modified equation of Schreiber type for annual runoff coefficient could be obtained with the smallest mean error of 11 per cent.

  • PDF

Regional Drought Frequency Analysis with Estimated Monthly Runoff Series in the Nakdong River Basin (낙동강 유역의 유역 유출량 산정에 따른 지역별 가뭄 빈도분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.53-67
    • /
    • 1999
  • In this study, regional frequency analysis is used to determine each subbasin drought frequency with watershed runoff which is calculated with Tank Model in Nakdong river basin. L-Monments methd which is almost unbiased and nearly normal distribution is applied to estimate paramers of drought frequency analysis of monthly runoff time series. The duration of '76-77 was the most severe drought year than othe rwater years in this study. To decide drought frequency of each subbasin from the main basin, it is calculated by interpolaing runoff from the frequency-druoght runoff relationship. and the linear regression analysis is accomplished between drought frequency of main basin and that of each subbasin. With the results of linear regression analysis, the drought runoff of each subbasin is calculated corresponing to drought frequency 10,20 and 30 years of Nakdong river basin considering safety standards for the design of impounding facilities. As the results of this study, the proposed methodology and procedure of this study can be applied to water budget analysis considering safety standards for the design of impounding facilities in the large-scale river basin. For this purpose, above all, it is recommanded that expansion of reliable observed runoff data is necessary instead of calculated runoff by rainfall-runoff conceptual model.

  • PDF

Climate Change Impacts on Paddy Irrigation Requirement in the Nakdong River Basin (기후변화가 낙동강 권역의 논 관개용수 수요량에 미치는 영향)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • The impacts of climate change on paddy irrigation requirements for Nakdong river basin in Korea have been analyzed. The HadCM3 model outputs for SRES A2 and B2 scenarios and International Water Management Institute $10'{\times}10'$ pixels observed data were used with kriging method. Maps showing the predicted spatial variations of changes in climate parameters and paddy irrigation requirements have been produced using the GIS. The results showed that the average growing season temperature was projected to increase by $2.2^{\circ}C$ (2050s A2), $0.0^{\circ}C$ (2050s B2), $3.7^{\circ}C$ (2080s A2) and $2.9^{\circ}C$ (2080s B2) from the baseline (1961-1990) value of $21{\circ}C$. The average growing season rainfall was projected to increase by 15.2% (2050s A2), 24.2% (2050s B2), 41.4% (2080s A2) and 16.7% (2080s B2) from the baseline value of 900 mm. Average volumetric irrigation demands were projected to decrease by 3.7% (2050s A2), 7.0% (2050s B2), 10.2% (2080s A2) and 1.4% (2080s B2) from the baseline value of $1.25{\times}10^9\;m^3$. These results can be used for the agricultural water resources development planning in the Nakdong river basin for the future.

A Brief Review of the Legal Definition of Chemical Accident under the Current Chemical Substances Control Act (화학물질관리법상 화학사고 정의에 관한 소고)

  • Jihoon Park;Seon-Oh Park;Hyojin Park;Hye-Ok Kwon
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.179-182
    • /
    • 2023
  • The Chemical Substances Control Act has been legislated to counter the risks posed by chemical substances to public health and the environment, but a number of small- and large-scaled incidents related to hazardous chemicals continue to occur every year. The Korean Ministry of Environment takes legal responsibility for prevention, preparedness, and response to nationwide chemical accidents under the Chemical Substances Control Act. The determination of chemical accidents that occur during hazardous chemical handling processes is based on the Article 2 (Definitions) of the law and the administrative criteria for judgement of chemical accidents. However, there are certain ambiguities in the scientific basis for determining chemical accidents under the current regulations. Whether or not a chemical accident has a direct influence on penalties and administrative measures for a workplace where an accident occurred, it is necessary to find reasonable criteria for determining chemical accident based on legal and scientific evidence.

Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin - (수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로-)

  • Kim, Gyeong hoon;Kwon, Heon gak;Ahn, Jung min;Kim, Sanghun;Im, Tae hyo;Shin, Dong seok;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.