• Title/Summary/Keyword: NaOH Leaching

Search Result 86, Processing Time 0.022 seconds

Strategy to Recover Rare Earth Elements from a Low Grade Resource via a Chemical Decomposition Method (화학적 분해법을 이용한 난용성 자원으로부터 희토류 회수 특성 연구)

  • Kim, Rina;Cho, Heechan;Jeong, Jinan;Kim, Jihye;Lee, Sugyeong
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, rare earth elements (REE) leaching from a refractory REE ore containing goethite as a major gangue mineral was conducted, introducing a two-stage method of chemical decomposition-acid leaching. At the chemical decomposition step, using one of alkaline agent, NaOH, the ore was decomposed, changing NaOH concentration from 20 to 50 wt% at 10% (w/w) of pulp density and the maximum temperature achieved without boiling at each NaOH concentration. With increasing NaOH concentration, light REE (Ce, La and Nd) and iron were concentrated in the solid phase which is the decomposed product, while aluminum (Al) and phosphorus (P) were removed to the liquid phase, and their concentrations in the solid phase were down to 0.96 and 0.17%, respectively. In addition, through XRD analysis, it was found that the crystallinity of goethite was considerably decreased. At the acid leaching step, the product decomposed by 50 wt% NaOH was leached at 3.0 M HCl and 80 ℃ for 3 hr, then the REE leaching efficiency was above 94% (Ce 80%), and the leaching efficiencies of Al and P were decreased to 12 and 0%, respectively. Therefore, in terms of both REE leaching efficiency and impurity removal, those decomposition and leaching conditions were chosen as optimum processing methods of the investigated material. In terms of REE leaching mechanism, because REE and iron leaching efficiencies showed the positive correlation each other, so it can be concluded that decreasing crystallinity of goethite affect the improvement of REE leaching.

Dissolution of Pb from the Complex Sulphide Concentrates Containing Galena and Arsenopyrite by Alkaline Oxidative Leaching (황비철광(黃砒鐵鑛)과 방연광(方鉛鑛)의 혼합황화광(混合黃化鑛)의 알카리산화(酸化)에 의한 Pb침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.17 no.3
    • /
    • pp.42-47
    • /
    • 2008
  • In this work, the dissolution behavior of Pb from the complex sulphide concentrates containing Galena and Arsenopyrite by alkaline oxidative leaching was studied. The influences of leaching temperature, oxygen partial pressure, leaching time and NaOH concentration of leaching solution were examined at the leaching conditions in the range of $100^{\circ}C{\sim}140^{\circ}C$ temperature, $40psi{\sim}100psi\;PO_2$ and $0.5M{\sim}2M$ NaOH concentration. The optimum result was obtained at the leaching condition of leaching temperature $120^{\circ}C$, 100psi $PO_2$, leaching time 30min. and 2M NaOH concentration of leaching solution.

Leaching behavior of rhenium and molybdenum from molybdenite roasting dust in NaOH solutions (휘수연석(輝水鉛石)의 배소(焙燒) 중 발생한 분경(粉慶)으로부터 NaOH에 의한 Rhenium과 Molybdenum의 침출(浸出))

  • Kim, Young-Uk;Kang, Jin-Gu;Sohn, Jeong-Soo;Cho, Bong-Gyu;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.37-43
    • /
    • 2009
  • The demand for rhenium has considerably increased recently owing to the large-scale consumption in industries and the price of rhenium has increased owing to the lack of supply and its availability. The dust from the roasting of molybdenite was employed to investigate the leaching behavior of rhenium and molybdenum. Leaching experiments were done by varying optimum parameters, such as reaction time, NaOH concentration and leaching temperature. The optimum leaching condition was found to be $4\;mol{\cdot}L^{-1}$ NaOH, 2 hours leaching time, $100\;g{\cdot}L^{-1}$ solid/liquid ratio, $80^{\circ}C$ temperature, and 250 rpm. At this condition, leaching percentage of rhenium and molybdenum was 86.1% and 88.6%, respectively.

Recovery of Tungsten from WC/Co Hardmetal Sludge by Alkaline Leaching Hydrometallurgy Process (WC/Co 초경합금 가공 슬러지로부터 알칼리침출 정련공정에 의한 W 회수)

  • Lee, Gil-Geun;Kwon, Ji-Eun
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.372-378
    • /
    • 2016
  • This study focuses on the development of an alkaline leaching hydrometallurgy process for the recovery of tungsten from WC/Co hardmetal sludge, and an examination of the effect of the process parameters on tungsten recovery. The alkaline leaching hydrometallurgy process has four stages, i.e., oxidation of the sludge, leaching of tungsten by NaOH, refinement of the leaching solution, and precipitation of tungsten. The WC/Co hardmetal sludge oxide consists of $WO_3$ and $CoWO_4$. The leaching of tungsten is most affected by the leaching temperature, followed by the NaOH concentration and the leaching time. About 99% of tungsten in the WC/Co hardmetal sludge is leached at temperatures above $90^{\circ}C$ and a NaOH concentration above 15%. For refinement of the leaching solution, pH control of the solution using HCl is more effective than the addition of $Na_2S{\cdot}9H_2O$. The tungsten is precipitated as high-purity $H_2WO_4{\cdot}H_2O$ by pH control using HCl. With decreasing pH of the solution, the tungsten recovery rate increases and then decrease. About 93% of tungsten in the WC/Co hardmetal sludge is recovered by the alkaline leaching hydrometallurgy process.

Recovery of Gallium from Zinc Smelting Residues by Alkali Leaching (아연제련잔사의 알칼리 침출에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.22-28
    • /
    • 2000
  • A study on the recovery of gallium from zinc residues is carried out by alkali leaching using NaOH. The results show that in case of alkali leaching of zinc residues, Zn, K and Si are mainly leached out and Fe and other base metals are scarcely leached out, which results in that gallium is easily recovered by solvent extraction. The leaching efficiency of gallium increases with increasing alkali concentration and solid density. Especially, alkali consumption is considerably reduced by washing the zinc residues with water before leaching in order to eleminate the soluble zinc compounds. The gallium from zinc residues is found to be leached out with a recovery of 80% or higher for 2hrs leaching with 1~1.25 M/L NaOH solution and solid density 333 g/L at $25^{\circ}C$.

  • PDF

Caustic Soda Decomposition and Leaching of Monazite in Hong-Cheon Area Deposit. (홍천산 모나자이트의 가성소다 분해 및 침출)

  • Kim Joon-Soo;Yoon Ho-Sung;Kim Sung-Don;Kim Chul-Joo;Lee Jin-Young
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, treatment conditions for monazite concentrate in Hong-Cheon area deposit were studied with NaOH fritting decomposition and HCl leaching experiments. At condition of NaOH fritting decomposition, it was appropriate to adopt particle size of -200 mesh monazite, reaction temperature of about $460^{\circ}C$ and NaOH/TREO mole ratio of 6. In case of HCl leaching for decomposed product, it was appropriate to use hydrochloric acid of above 8N with leaching temperature of above $80^{\circ}C$, leaching time of 2 hrs and pulp density of about 10%. A rate of decomposition and leaching for monazite was above 90% under optimum conditions. Sodium phosphate compound was effectively recovered from NaOH decomposed solution, and mixed rare earth chloride solution was prepared with HCl leaching of decomposed product.

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

NaOH Decomposition and Hydrochloric Acid Leaching of Monazite by Hot Digestion Method (Hot digestion법(去)에 의(依)한 모나자이트정광(精鑛)의 알카리분해(分解) 및 염산침출(鹽酸浸出) 거동(擧動))

  • Kim, Sung-Don;Lee, Jin-Young;Kim, Chul-Joo;Yoon, Ho-Sung;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.70-76
    • /
    • 2010
  • It was to investigate the optimum leaching conditions for the NaOH hot digestion and hydrochloric acid leaching of Monazite. The optimum condition for NaOH hot digestion was that the concentration of NaOH/TREO mole ratio was 15, the temperature of decomposition $140^{\circ}C$, and reaction time 2 hrs. And the optimum condition for the hydrochloric acid leaching of NaOH hot digestion product was that the concentration of hydrochloric acid was 6N, leaching time 2 hrs and pulp density about 15%. The yield of rare earth oxide was above 90% on the above experimental condition.

Treatment of Black Dross with Water and NaOH Solution (물과 수산화나트륨용액에 의한 블랙 드로스의 처리)

  • Xing, Wei Dong;Ahn, Byung Doo;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.53-60
    • /
    • 2017
  • Black dross contains metallic aluminium, alumina, silica, MgO, soluble salts together with minor ingredients. Control of silica in black dross is important in transforming the black dross into usable materials. First, most of the soluble salts (KCl and NaCl) in black dross were dissolved in water at reaction temperature of $50^{\circ}C$. Leaching behavior of silica, alumina, MgO and $TiO_2$ from the residue after water treatment was investigated by varying NaOH concentration and reaction temperature. Reaction temperature ($25{\sim}95^{\circ}C$) was favorable to the leaching of alumina but an optimum temperature existed for silica. MgO was not dissolved at all in the NaOH concentration range from 2 to 6 M. At the leaching condition of 5 M NaOH and reaction temperature of $95^{\circ}C$, approximately 80% of alumina and 68% of silica was dissolved.

Characterization of Pretreatment by NaOH Leaching for Production of Bioethanol from Palm Waste (팜 부산물 활용 바이오 에탄올 생산을 위한 NaOH 전처리 공정의 특성)

  • Woo, Sang Sun;Park, Ji-Yeon;Na, Jong-Boon;Lee, Joon-Pyo;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.106.1-106.1
    • /
    • 2010
  • 본 연구는 팜 부산물로부터 바이오 에탄올을 생산하는 전처리-당화-발효 공정의 첫 번째 단계인 전처리 공정에서 팜 부산물을 NaOH를 이용하여 효율적으로 전처리하고자 하였다. 암모니아 침지법과 NaOH 침출법을 비교한 결과 팜 부산물에 대해서는 암모니아 침지에 의한 탈리그닌 효과가 적으며 NaOH 전처리가 적합한 방법임을 알 수 있었다. 40-100 mesh 크기의 팜 부산물을 이용하여 반응온도(110, 130, $150^{\circ}C$), 반응시간(20, 40, 60분) 및 NaOH 농도(5%, 11%)의 변화에 따른 팜 부산물의 탈리그닌율과 글루코스 및 자일로스 회수율 간의 상호관계를 확인하였다. $150^{\circ}C$까지의 온도 조건에서 온도에 의한 자일로스의 분해는 일어나지 않는 것으로 확인되었다. 팜 부산물의 탈리그닌율은 시간이 증가할수록 증가하였으며, 높은 NaOH 농도에서 더 높은 것으로 나타났다. 그러나 글루코스 및 자일로스의 회수율은 높은 농도에서 낮게 나타났으며, 시간이 지날수록 감소하여 손실이 많은 것으로 나타났다. 따라서 NaOH 농도가 낮을수록 당 회수율은 높게 나타나지만, 탈리그닌율이 낮아 당화 효율이 떨어지므로 효소 당화 후에 최종 당 회수율이 높은 NaOH 농도 조건을 결정하여야 하겠다.

  • PDF