DOI QR코드

DOI QR Code

Strategy to Recover Rare Earth Elements from a Low Grade Resource via a Chemical Decomposition Method

화학적 분해법을 이용한 난용성 자원으로부터 희토류 회수 특성 연구

  • Kim, Rina (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Heechan (Department of Energy Resources Engineering, Seoul National University) ;
  • Jeong, Jinan (Department of Energy Resources Engineering, Seoul National University) ;
  • Kim, Jihye (Department of Chemical Engineering and Applied Chemistry, University of Toronto) ;
  • Lee, Sugyeong (Robert M. Buchan Department of Mining, Queen's University)
  • 김리나 (한국지질자원연구원 광물자원연구본부) ;
  • 조희찬 (서울대학교 에너지자원공학과) ;
  • 정진안 (서울대학교 에너지자원공학과) ;
  • 김지혜 (토론토대학교 화학공학과) ;
  • 이수경 (퀸즈대학교 광산공학과)
  • Received : 2019.09.30
  • Accepted : 2019.12.02
  • Published : 2020.02.28

Abstract

In this study, rare earth elements (REE) leaching from a refractory REE ore containing goethite as a major gangue mineral was conducted, introducing a two-stage method of chemical decomposition-acid leaching. At the chemical decomposition step, using one of alkaline agent, NaOH, the ore was decomposed, changing NaOH concentration from 20 to 50 wt% at 10% (w/w) of pulp density and the maximum temperature achieved without boiling at each NaOH concentration. With increasing NaOH concentration, light REE (Ce, La and Nd) and iron were concentrated in the solid phase which is the decomposed product, while aluminum (Al) and phosphorus (P) were removed to the liquid phase, and their concentrations in the solid phase were down to 0.96 and 0.17%, respectively. In addition, through XRD analysis, it was found that the crystallinity of goethite was considerably decreased. At the acid leaching step, the product decomposed by 50 wt% NaOH was leached at 3.0 M HCl and 80 ℃ for 3 hr, then the REE leaching efficiency was above 94% (Ce 80%), and the leaching efficiencies of Al and P were decreased to 12 and 0%, respectively. Therefore, in terms of both REE leaching efficiency and impurity removal, those decomposition and leaching conditions were chosen as optimum processing methods of the investigated material. In terms of REE leaching mechanism, because REE and iron leaching efficiencies showed the positive correlation each other, so it can be concluded that decreasing crystallinity of goethite affect the improvement of REE leaching.

침철석을 주요 맥석광물로 하는 난용성 자원으로부터 희토류를 회수하기 위해 화학적 분해-산 침출의 2단계 방법을 이용한 맥석광물 분해 및 희토류 침출율 향상 연구를 수행하였다. 화학적 분해에는 알칼리인 NaOH를 사용하였으며 NaOH 용액 농도 20-50 wt%, 광액 농도 10% (w/w), 온도는 각 농도에서 NaOH 용액이 끓지 않는 최대 온도로 하여 분해 반응을 진행하였다. NaOH 농도가 높아질수록 경희토류 (Ce, La, Nd) 와 철은 고체상의 분해 산물 내에 농축되는 경향을 나타냈으며, 알루미늄과 인은 용액상으로 제거되어 50 wt% NaOH로 분해 시 고체상에 각각 0.96%, 0.17% 만이 잔류하는 것으로 나타났다. 또한, 주요 맥석광물인 침철석의 결정성이 분해 과정 후 감소하는 것으로 분석되었다. 50 wt% NaOH 분해 산물을 3.0 M 염산, 80 ℃ 조건에서 3시간 동안 침출했을 때, 94% 이상의 희토류 침출율을 달성하였으며 (Ce 80%), 불순물 중 알루미늄 침출율이 12%, 인 침출율이 0%로 감소하여 본 광석에 대한 최적 분해 및 침출 조건으로 선정하였다. 본 실험 결과로부터 희토류와 철의 침출율 간에 양의 상관관계가 있는 것으로 분석되었으며, 따라서 침철석의 결정성 감소가 희토류 침출율 향상에 기여한다고 할 수 있다.

Keywords

References

  1. Gupta, C.K., Krishnamurthy, N., 2005 : Extractive Metallurgy of Rare Earths, CRC Press, Florida.
  2. Moldoveanu, G.A., Papangelakis, V.G., 2013 : Recovery of rare earth elements adsorbed on clay minerals: II. Leaching with ammonium sulfate. Hydrometallurgy, 131-132, pp.158-166. https://doi.org/10.1016/j.hydromet.2012.10.011
  3. Yoon, H., Kim, C., Chung, K., et al., 2016 : Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: Waste recycling strategies for permanent magnet processing. Hydrometallurgy, 165, pp.27-43. https://doi.org/10.1016/j.hydromet.2016.01.028
  4. Buchanan, J., Reveley, S., Forrester, K., et al., 2014 : Review o f current rare earth processing practice. ALTA 2014 Uranium-REE Conference, pp.139-165, ALTA Metallurgical Services, Perth-Austalica, 24-31 May 2014, Printed in Australia,.
  5. Neumann, R., Medeiros, E.B., 2015 : Comprehensive mineralogical and technological characterization of the Araxa (SE Brazil) complex REE (Nb-P) ore, and the fate of its processing. International Journal of Mineral Processing, 144, pp.1-10. https://doi.org/10.1016/j.minpro.2015.08.009
  6. Ivano-Emie, B.N., Nisel'son, L.A., Ivolgina, A.T., 1961 : Solubility of yttrium hydroxide in sodium hydroxide solution. Zhurnal Neorganicheskoi Khimii, 6, pp.1483-1484.
  7. Kim, R., Cho, H.C., Han, K.N., 2014 : Behavior of anions in association with metal ions under hydrometallurgical environments part I: $OH^-$ effect on various cations. Minerals and Metallurgical Processing, 31(1), pp.34-39.
  8. McNeice, J., Kim, R., Ghahreman, A., 2019 : Oxidative precipitation of cerium in acidic chloride solutions: part I - Fundamentals and thermodynamics. Hydrometallurgy, 184, pp.140-150. https://doi.org/10.1016/j.hydromet.2018.12.018
  9. Joshi, S., Kulp, E.A., Fahrenholtz, W.G., 2012 : Dissolution of cerium from cerium-based conversion coatings on Al 7075-T6 in 0.1 M NaCl solutions. Corrosion Science, 60, pp.290-295. https://doi.org/10.1016/j.corsci.2012.03.023