• Title/Summary/Keyword: NVIDIA Jetson TX2

Search Result 8, Processing Time 0.028 seconds

Block Chain Conformance in Modular NVIDIA Jetson TX 2 Embedded Products (모듈형 NVIDIA Jetson TX2 임베디드 제품에서의 블록체인 적합성)

  • Choi, Hyo Hyun;Lee, Gyeong young;Won, Son Dong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.297-298
    • /
    • 2018
  • 본 논문에서는 모듈형 NVIDIA Jetson TX2 임베디드 제품에서 채굴을 통해 블록체인의 적합성 여부를 보인다. 범용성과 적합성의 평가기준은 TPS (Transactions Per Second), 블록생성시간(Block Generation Time)과 확정시간(Confirmation Time)이다. 채굴 준비 시 TX2 임베디드 제품의 특성상 하드웨어 드라이버를 자립적으로 설치 할 수 없기 때문에 HOST PC와 함께 사용하였다. HOST PC는 TX2 제품과 호환성이 높은 OS인 Ubuntu 14.04를 사용했으며, 하드웨어 드라이버 설치를 위해 NVIDIA 공식 TX2 제품 소프트웨어 중 JetPack 3.1 Release Version 을 사용하였다. 코인은 이더리움(Ethereum), 라이트코인(Litecoin)과 제트캐쉬(Zcash) 총 3종 코인으로, 채굴 시 나온 결과물로 TX2 제품에서 블록체인의 적합성 여부를 보였다.

  • PDF

Development of People Counting Algorithm using Stereo Camera on NVIDIA Jetson TX2

  • Lee, Gyucheol;Yoo, Jisang;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.8-14
    • /
    • 2018
  • In the field of surveillance cameras, it is possible to increase the people detection accuracy by using depth information indicating the distance between the camera and the object. In general, depth information is obtained by calculating the parallax information of the stereo camera. However, this method is difficult to operate in real time in the embedded environment due to the large amount of computation. Jetson TX2, released by NVIDIA in March 2017, is a high-performance embedded board with a GPU that enables parallel processing using the GPU. In this paper, a stereo camera is installed in Jetson TX2 to acquire depth information in real time, and we proposed a people counting method using acquired depth information. Experimental results show that the proposed method had a counting accuracy of 98.6% and operating in real time.

A Study on the Performance of Stereo Matching Algorithms in NVIDIA Jetson TX2 (NVIDIA Jetson TX2에서 스테레오 매칭 알고리즘들에 대한 성능에 관한 연구)

  • Lee, Gyu-Cheol;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.164-165
    • /
    • 2018
  • 2017년 3월에 NVIDIA에서 출시한 Jetson TX2는 GPU를 탑재한 고성능의 임베디드 보드이다. 이 제품은 GPU를 이용한 병렬 처리를 통해 임베디드 시스템 상에서 연산량이 많은 알고리즘을 동작시킬 수 있다. 스테레오 매칭 기법은 스테레오 카메라를 이용하여 깊이 정보를 획득할 수 있으며, 획득한 깊이 정보는 다양한 어플리케이션의 메타 데이터로써 활용될 수 있다. 하지만 알고리즘의 연산량이 매우 많아 GPU를 탑재한 데스크톱에서만 동작하는 것이 일반적이었다. 이에 본 논문은 임베디드 보드인 Jetson TX2에서 기존에 개발되었던 스테레오 매칭 알고리즘들을 동작시키고 성능 분석을 통해 실시간 동작 여부에 대한 연구를 진행하였다.

  • PDF

Overlapped Image Learning Neural Network for Autonomous Driving in the Indoor Environment (실내 환경에서의 자율주행을 위한 중첩 이미지 학습 신경망)

  • Jo, Jeong-won;Lee, Chang-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.349-350
    • /
    • 2019
  • The autonomous driving drones experimented in the existing indoor corridor environment was a way to give the steering command to the drones by the neural network operation of the notebook due to the limitation of the operation performance of the drones. In this paper, to overcome these limitations, we have studied autonomous driving in indoor corridor environment using NVIDIA Jetson TX2 board.

  • PDF

YOLO Model FPS Enhancement Method for Determining Human Facial Expression based on NVIDIA Jetson TX1 (NVIDIA Jetson TX1 기반의 사람 표정 판별을 위한 YOLO 모델 FPS 향상 방법)

  • Bae, Seung-Ju;Choi, Hyeon-Jun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.467-474
    • /
    • 2019
  • In this paper, we propose a novel method to improve FPS while maintaining the accuracy of YOLO v2 model in NVIDIA Jetson TX1. In general, in order to reduce the amount of computation, a conversion to an integer operation or reducing the depth of a network have been used. However, the accuracy of recognition can be deteriorated. So, we use methods to reduce computation and memory consumption through adjustment of the filter size and integrated computation of the network The first method is to replace the $3{\times}3$ filter with a $1{\times}1$ filter, which reduces the number of parameters to one-ninth. The second method is to reduce the amount of computation through CBR (Convolution-Add Bias-Relu) among the inference acceleration functions of TensorRT, and the last method is to reduce memory consumption by integrating repeated layers using TensorRT. For the simulation results, although the accuracy is decreased by 1% compared to the existing YOLO v2 model, the FPS has been improved from the existing 3.9 FPS to 11 FPS.

Real-time Multiple Pedestrians Tracking for Embedded Smart Visual Systems

  • Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.167-177
    • /
    • 2019
  • Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.

Development of Crosswalk Situation Recognition Device (횡단보도 상황 인식 디바이스 개발)

  • Yun, Tae-Jin;No, Mu-Ho;Yeo, Jeong-Hun;Kim, Jae-Yun;Lee, Yeong-Hoon;Hwang, Seung-Hyeok;Kim, Hyeon-Su;Kim, Hyeong-Jun;Park, Seung-Ryeol;Bae, Chang-Hui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.143-144
    • /
    • 2020
  • 4차 산업 시대가 도래하여 빅데이터와 딥러닝 기술은 다양한 분야에서 아주 중요한 기술로 자리 잡고 있으며, 현재 세계 여러 분야에서 이 기술들을 이용하여 일상, 산업 분야에 적용을 시키고자 한다. 국내에서는 스마트 팩토리, 스마트 시티와 같은 분야에 적용하고 있다. 본 논문에서는 스마트 시티에 적용할 수 있는 횡단보도 상황을 인지하여 교통제어에 활용할 수 있는 빅데이터를 생산하거나 효율적인 교통제어에 활용할 수 있도록 Nvidia Jetson TX2와 실시간 객체 감지 기술인 YOLO v3를 이용하여 횡단보도용 상황 인식을 위한 영상인식 장치를 개발하였다. 제안하는 기술들을 이용하여 스마트시티 구축에 활용할 수 있고, 실시간으로 추가적으로 필요한 객체를 감지하여 확장이 용이한 장점이 있다. 또한 구현에서 효율성을 높이기 위하여 에지 컴퓨팅, 스페이스 디텍션과 같은 기술들을 활용하였다.

  • PDF