• Title/Summary/Keyword: NTU

Search Result 315, Processing Time 0.028 seconds

A Study on Hydraulic Behavior and Mass Transfer by Absorption in Packing Tower (충전탑에서 흡수에 따른 물질전달과 수력학적 거동에 관한 연구)

  • 김석택
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.393-396
    • /
    • 2000
  • Packing tower has been used in the chemical industry and the protection of environment for a long time. In the view of environmental protection purification of exhaust gas can be performance effective by gas absorption in counter-current packing tower. In this study characteristics of hydraulic and mass transfer were investigated in D. $0.3m {\times} H. 1.4m$ packing tower with 50mn plastic Hiflow-ring. This study was carried out "Test systems were experimented in conditions of Air, $Air/H_2O. NH_3-Air/H_2O, NH_3-Air/H_2O-H_2SO_4$ and $SO_2-Air/H_2O-NaOH$ under steady state" The extent of test included dry and wetting pressure drop physical law separation efficiency and hold-up as function of gas and liquid load.quid load.

  • PDF

A Study on Hydraulic Behavior and Desorption of $CO_2$ Gas in the Counter-current Packing Tower (역류식 충전탑에서 이산화탄소 탈착과 수력학절 거동에 관한 연구)

  • 김석택
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.94-100
    • /
    • 2000
  • This study was carried out to interpret hydraulic behavior and CO2 gas desorption in counter-current packing tower which packed 50mm plastic Hiflow-ring. The results are as follow : To compare with conventional packing, 50mm Hiflow-ring could save energy because of low pressure drop under high load. As relative error between calculated value and investigated value was less than 6% in the loading point and flooding point we found that we are predict results mathematically which occur in packing tower. The unique magnitude of packing which was used are as follows. $C_L=2.1{\times}10^{-4}$, n=0.787 so we can predict efficiency which occur

  • PDF

Development of Relationship between Air Quality and Rain Acidity (대기질 - 강우산성도 관계식의 개발)

  • 구자공;유동준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.45-51
    • /
    • 1986
  • The simple and precise model for the estimation of rain acidity from the ambient air quality was developed using the theory of wet scrubber and the chemical equilibria of $SO_2, CO_2, and H_2O$ system. From the measured mixing height, and from the developed relationship between NTU (=number of transfer units) and the concentration of $SO_2$(aq) in rain drops, the HTU (= height equivalent to one transfer unit, i.e. mass transfer resistance) was estimated, and validated with the field-measured data. In Seoul, Korea where the effect of $SO_2$ on rainfall acidity is as high as 84% and the average mixing height is 1 km, the average HTU of $SO_2$ system was found to be 191.5m. The important parameters affecting HTU were identified as rainfall intensity and initial ambient concentration of $SO_2$, and their effects on the value of overall volumetric mass transfer coefficient were quantified.

  • PDF

Numerical Analysis of an Orifice Pulse Tube Refrigerator (오리피스 맥동관 냉동기의 수치적 해석)

  • Lee, K.S.;Jeong, E.S.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.282-290
    • /
    • 1994
  • A numerical model for the analysis and design of orifice pulse tube refrigerators has been developed. Heat transfer coefficient and friction factors in the model vary with time, and the real physical properties such as thermal conductivity and viscosity were used to improve the accuracy of the model. Thermodynamic behavior of the working fluid within pulse tube refrigerators was investigated and the effect of design parameters, such as reservoir volume, orifice diameter, and NTU of regenerator, on the cooling load and COP was shown.

  • PDF

하수처리장 방류수를 이용한 인공함양 가능성 평가

  • 김병군;서인석;홍성택;김형수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.257-260
    • /
    • 2002
  • The main purpose of this research is to find suitable treatment methods of wastewater effluent for artificial recharge. For this purpose, we search the effluent quality of wastewater treatment plant and possibility of additional filtration process. Particles ranged 2 ~ 5 ${\mu}{\textrm}{m}$ and 15~20 ${\mu}{\textrm}{m}$ in "T" WWTP(Waste Water Treatment Plant) effluent were relatively dominant. In dual-media filtration system operation, head-loss development of column 1 was about two times faster than column 2, and head-loss development within 5 cm from surface was very important factor in operation, Conclusively, for the stable filtration and running time of 1.5~2 day, influent turbidity must keep 5 NTU or below, and filtration system must operated at 280 m/day or below. After filtration of WWTP effluent, water quality reached satisfactory level. This water has potential of agricultural reusing, flushing water in building, recharging water to river or stream at dry season and artificial recharge of ground water.und water.

  • PDF

Coagulation Properties of Granite Particle (화강석 잔사의 응집특성)

  • 홍영호
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • This study was carried out to investigate the optimal condition for granite particle coagulation process by using various chemical coagulation agents. The coagulation of a suspended granite particle was monitored by using various different coagulants, such as $Al_2(SO_4)_3{\cdot}14H_2O,{\;}FeCl_3{\cdot}6H_2O,{\;}SA-solution(KOH{\;}+{\;}Al(OH)_3{\;}+{\;}K_2CO_3{\;}mixture)$ and jade particle. To accomplish this study, analysis of water quality, removing Turbidity and Packing Density were measured with jar-tester. In the results of this experiment, it was found that the removal rate of the granite particle was increased with the decrease of the pH of the sludge. The turbidity(NTU) at the above coagulants was reduced from 95% to 98%. Removed of Turbidity and Packing Density was more efficiency to the SA-solution than others.

Advanced water treatment in pilot scale BAC-sand filter (Pilot Scale 생물활성탄 여과공정을 이용한 상수의 고도처리)

  • 이윤진;문철훈;김재우;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.47-52
    • /
    • 2002
  • This study was carried out to examine the characteristics of dual media filter with BAC and sand on a pilot scale which was installed in T Water Treatment Plant of Seoul. The conclusions drawn from experimental results are as follows : For the BAC-Sand filter, the preceded gravity sand filter did not largely affect the removal of organics and turbidity causing matters, tut the frequency of backwashing was explicitly reduced to two times with the stable growth of microorganisms. The biomass on media in case of existence of preceded sand filter was 1.4 times higher than that of nonexistence. In case of backwashing with water, the time needed to comply with below 10NTU took 22, 10, and 5 minutes respectively with the expansion ration of 1.2, 1.5 and 1.8. The higher the expansion ration was, the shorter the backwashing time was.

Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space (좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가)

  • Kim, Sung-Kwang;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

Thermodynamic Modeling of Parallel Flow Condenser for Automotive Air Conditioning System (자동차용 평행류 응축기의 열성능 모델링)

  • 김일겸;고재윤;박상록;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.771-779
    • /
    • 2001
  • In this study, a simulation program has been developed to predict the performance of a parallel flow condenser of an air conditioning system for an automobile. The well-known correlations for he heat transfer rates and the pressure drops are included in this model. It is fond that the numerical model can predict the heat transfer rate and the pressure drop accurately. As the condensing pressure increases of fixed air inlet temperature, the heat transfer rate increases and the pressure drop decreases. The effect of he degree of subcooling on the performance of the condenser is greater than that of the degree of super-heating because the ratio of the area occupied by he tow-phase refrigerant the total area is significantly affected by he degree of subcooling rather than the degree of superheating.

  • PDF

Theoretical Determination of Optimum Rotating Speed of Desiccant Rotor (이론적 방법에 의한 제습로터 최적 회전속도의 결정)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.603-608
    • /
    • 2008
  • A simple equation to find a optimum speed of desiccant rotor is presented in this theoretical study. Usually the determination of optimum speed of desiccant rotor requires tedious and lengthy procedures by solving governing differential equations with many complicated parameters. The determining equation of optimal rotating speed is derivated from governing differential equations with three linearization assumptions, which simplify temperature profile linear along the desiccant rotor depth, psychrometric chart within a proper range, and relative humidity-sorption capacity relation. This study shows that the dominant parameters of optimal rotating speed of desiccant rotor are NTU, flow velocity, desiccant rotor depth, and temperature different between dehumidification and regeneration. The comparison shows the good agreement between complicated calculation results and simple theoretical equation prediction.

  • PDF