• Title/Summary/Keyword: NRZ-OOK

Search Result 9, Processing Time 0.019 seconds

Flicker Prevention Using Byte-Inversion in OOK Modulated Visible Light Data Transmission (OOK변조된 가시광 데이터전송에서 바이트반전을 이용한 플리커 방지)

  • Lee, Junho
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.579-585
    • /
    • 2020
  • In this study, we used byte-inversion transmission method to prevent the flicker of lighting source in a visible light data communication link. In the transmitter, the non-return-to-zero (NRZ) signal with 9.6 kbps was on-off keying (OOK) modulated with a 100 kHz square wave carrier and byte-inversion signal was added after each byte to make the average optical power of the light-emitting diode (LED) constant. In the receiver, we used a band-pass filter to eliminate the interference of the 120 Hz noise which was induced from the adjacent light lamps, and an OOK demodulator to recover the original NRZ signal This scheme is useful in constructing wireless data networks using the illumination of visible light lamps.

Turbulence-tolerant Manchester On-off Keying Transmission for Free-space Optical Communication

  • Qian-Wen Jing;Pei-Zheng Yu;Han-Lin Lv;Yanqing Hong
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.345-353
    • /
    • 2023
  • We propose a turbulence-tolerant Manchester on-off keying (M-OOK) transmission for free-space optical (FSO) communication. At the transmitter end, a M-OOK signal featuring a spectrum with low-frequency components absent is modulated and transmitted into a turbulent channel. At the receiver end, a low-pass filter (LPF) -based adaptive-threshold decision (ATD) with LPF-extracted channel-state information (CSI) and a high-pass filter (HPF)-based fixed-threshold decision (FTD) are employed to compensate for the effects of turbulence, owing to the low-frequency spectral characteristics of the turbulent channel. The performance of LPF-based ATD and HPF-based FTD are evaluated for various cutoff frequencies for the LPF and HPF. Besides, the proposed M-OOK transmission is compared to conventional non-return-to-zero OOK (NRZ-OOK) for different data rates. The proposed technique is verified in simulation. The simulation results show that the proposed M-OOK detection with optimized cutoff frequencies of LPF and HPF has better bit-error-rate (BER) performance compared to NRZ-OOK, and it is close to the theoretical ATD with the knowledge of precise CSI under various degrees of turbulence effects.

Realization of Non-carrier Visible Light Communication System based upon LED IT (LED IT 기반의 간편한 비캐리어 가시광 통신 시스템 구현)

  • Lim, Kyeong-Sun;Baang, Sung-Keun;Lee, Yong-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1117-1125
    • /
    • 2011
  • In this paper, as a study of the simple visible light communication(VLC) with LED light, the visible light communication system that are made up with the $3{\times}3$ white LED array for visible light transmission, various photodiodes for visible light reception, and a non-carrier NRZ-OOK modulation scheme is designed and implemented to have a 115.2 kbps data speed at 2.5 m distance between transmitter and receiver. For the performance analysis of the developed VLC system, the maximum distance between VLC transmitter and receiver on the conditions of various transmission speeds, the number of LED array, or the various kind of LED and photodiode is obtained, and various performances are analyzed by experiments.

Performance Analysis of the VLC System applying SR-ARQ (SR-ARQ를 적용한 VLC 시스템의 성능 분석)

  • Choi, Byeong-Gon;Lee, Min-Jung;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.127-134
    • /
    • 2015
  • VLC(Visible Light Communication) is the technology to send and receive data by using visible light that LED emits. The basic principle of VLC is the communication by using flashing(ON/OFF) of the light from the LED that changes electricity to light in short time. As the recent advances in LED technology, VLC is also received a lot of attention and the research about it is in progress actively. Especially, the interest about indoor VLC system is increasing because the visible light can't pass through the wall. In this paper, we compose the indoor SISO VLC system with NRZ-OOK and VPPM modulation schemes. Also, we apply SR-ARQ, a kind of re-transmission error control schemes, to the VLC system. And then, we compare and analyze the performance of communication according to the location of receiver and the type of modulation by using BER, the number of transmission and throughput.

Performance Improvement for Visible Light Communications Using Pre-Equalizer and Optical Design (전치 등화기와 광학설계를 이용한 가시광통신 전송 용량 및 거리 향상 연구)

  • Kwon, Do-Hoon;Yang, Se-Hoon;Kim, Hyun-Seung;Son, Yong-Hwan;Han, Sang-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.476-481
    • /
    • 2014
  • In this paper, we design the pre-equalizer of transmitter circuit in order to enhancement modulation bandwidth of white LED which is light source of VLC (Visible Light Communication). Also, we eliminate yellow light component by optical filtering which mitigate frequency response of white LED. Power loss by optical filtering is overcome by using convex lens. By applying proposed system, 3 dB bandwidth deciding modulation bandwidth of white LED increases from 3 MHz to more than 25 MHz and the transmission distance increases by optical design which secure additional signal power. We optically modulate NRZ-OOK signal to LED and receive light signal using APD. We analyze received data using CSA and RFSA. As a result, we experimently demonstrate the possibility that transmits NRZ-OOK signal up to 30 Mbps in 4.5 m, 50 Mbps in 1.5 m through the pre-equalizer and optical design.

A Study on Performance of Visible Light Wireless Communication System in Marine Environment (해양 환경에서 가시광 무선통신 시스템의 성능에 관한 연구)

  • Yu, Sung Yub;Jang, Se Bong;Cha, Jae Sang;Kim, Suk Chan
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.65-68
    • /
    • 2016
  • In this paper, visible light wireless communication system according to the climate is studied in the marine environment. The light visibility can be determined by the different weather conditions (clear air, rain, storm, fog) in Kim's atmospheric channel model. By simulating the OOK-NRZ modulation technique, the BER performances are compared in the different weather conditions. In the field test, the error bit is measured in the visible-light communication. The effectiveness of visible light communication in the marine environment is confirmed by comparing the analysis of simulations and field experiments.

Dimming Control in Visible Light Communication Using Subcarrier Modulation of Manchester Code (맨체스터 코드의 부반송파 변조를 이용한 가시광통신의 조명제어)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • In this study, we propose a dimming control method for a visible light communication (VLC) system, in which the subcarrier on-off keying (OOK) modulation of Manchester code is used for data transmission. In the VLC transmitter, non-return-to-zero (NRZ) code data is transformed to Manchester code, which is OOK modulated with a subcarrier. Manchester code is used for flicker-free lighting; the duty factor is changed for dimming control, and the subcarrier is used for preventing the adjacent noise light interference. In the experiments, the dimming control was carried out from about 8%-92% of the continuous wave (CW) LED light. This configuration is simple and effective in constructing a VLC system for indoor wireless sensor networks with flicker-free illumination and dimming control capability without adjacent noise light interference.

Design and Implementation of VLID System by Back-Scattering Visible Light (가시광의 후방산란을 이용한 VLID 시스템 설계 및 구현)

  • Yun, Jisu;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.10-18
    • /
    • 2017
  • In this paper, we designed and implemented a visible light identification(VLID) system consisting of a VLID reader and a tag which backscatters incident lights from the reader. A VLID tag sends its ID to the reader by switching an LCD shutter which is located on its surface. The VLID reader consists of six LEDs and a photodiode(PD). The LEDs emit visible light and a PD located in a center position of LEDs receives backscattered light from the VLID tag. A microcontroller and a commercial liquid crystal display(LCD) shutter for 3D-TV glasses are used to implement a VLID tag. Experiments were conducted to confirm VLID system performance. We successfully demonstrated experiments to send NRZ-OOK signal of 100 bps over a distance of 35 cm at daytime. Also, we suggested the theoretical maximum transmission rate and the various methods to enhance the separation distance between a VLID reader and a tag.

Vehicle Visible Light Communication System Utilizing Optical Noise Mitigation Technology (광(光)잡음 저감 기술을 이용한 차량용 가시광 통신시스템)

  • Nam-Sun Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.413-419
    • /
    • 2023
  • Light Emitting Diodes(LEDs) are widely utilized not only in lighting but also in various applications such as mobile phones, automobiles, displays, etc. The integration of LED lighting with communication, specifically Visible Light Communication(VLC), has gained significant attention. This paper presents the direct implementation and experimentation of a Vehicle-to-Vehicle(V2V) Visible Light Communication system using commonly used red and yellow LEDs in typical vehicles. Data collected from the leading vehicle, including positional and speed information, were modulated using Non-Return-to-Zero On-Off Keying(NRZ-OOK) and transmitted through the rear lights equipped with red and yellow LEDs. A photodetector(PD) received the visible light signals, demodulated the data, and restored it. To mitigate the interference from fluorescent lights and natural light, a PD for interference removal was installed, and an interference removal device using a polarizing filter and a differential amplifier was employed. The performance of the proposed visible light communication system was analyzed in an ideal case, indoors and outdoors environments. In an outdoor setting, maintaining a distance of approximately 30[cm], and a transmission rate of 4800[bps] for inter-vehicle data transmission, the red LED exhibited a performance improvement of approximately 13.63[dB], while the yellow LED showed an improvement of about 11.9[dB].