DOI QR코드

DOI QR Code

Dimming Control in Visible Light Communication Using Subcarrier Modulation of Manchester Code

맨체스터 코드의 부반송파 변조를 이용한 가시광통신의 조명제어

  • Lee, Seong-Ho (Department of Electronics and IT Media Engineering, Seoul National University of Science and Technology)
  • 이성호 (서울과학기술대학교 전자IT미디어공학과)
  • Received : 2019.04.22
  • Accepted : 2019.05.29
  • Published : 2019.05.31

Abstract

In this study, we propose a dimming control method for a visible light communication (VLC) system, in which the subcarrier on-off keying (OOK) modulation of Manchester code is used for data transmission. In the VLC transmitter, non-return-to-zero (NRZ) code data is transformed to Manchester code, which is OOK modulated with a subcarrier. Manchester code is used for flicker-free lighting; the duty factor is changed for dimming control, and the subcarrier is used for preventing the adjacent noise light interference. In the experiments, the dimming control was carried out from about 8%-92% of the continuous wave (CW) LED light. This configuration is simple and effective in constructing a VLC system for indoor wireless sensor networks with flicker-free illumination and dimming control capability without adjacent noise light interference.

Keywords

HSSHBT_2019_v28n3_191_f0001.png 이미지

Fig. 1.Waveforms in OOK Manchester code transmission. (a) Sync pulse, (b) NRZ input data, (c) Base-band Manchester code, (d) OOK Manchester code with low DC level, and (e) OOK Manchester code with high DC level.

HSSHBT_2019_v28n3_191_f0003.png 이미지

Fig. 3. Configuration of the VLC transmitter.

HSSHBT_2019_v28n3_191_f0004.png 이미지

Fig. 4. Observed waveforms in the VLC transmitter. (a) Sync pulse waveform, (b) NRZ input data waveform, (c) Base-band Manchester code, and (d) OOK Manchester code.

HSSHBT_2019_v28n3_191_f0005.png 이미지

Fig. 5. Observed waveforms in the VLC transmitter. (a) Sync pulse waveform, (b) NRZ data waveform, (c), (d), (e) OOK Manchester codes with low DC level and duty factors of 10%, 50%, 90%, respectively.

HSSHBT_2019_v28n3_191_f0006.png 이미지

Fig. 6. Observed waveforms in the VLC transmitter. (a) Sync pulse waveform, (b) NRZ data waveform, (c), (d), (e) OOK Manchester code with high DC level and duty factor of 10%, 50%, 90%, respectively.

HSSHBT_2019_v28n3_191_f0007.png 이미지

Fig. 7. Configuration of the VLC receiver.

HSSHBT_2019_v28n3_191_f0008.png 이미지

Fig. 8. Observed waveforms in the VLC receiver. (a) Photodiode voltage waveform, (b) OOK modulated sync pulse waveform, and (c) OOK modulated Manchester code waveform.

HSSHBT_2019_v28n3_191_f0009.png 이미지

Fig. 9. Observed waveforms in the VLC receiver. (a) OOK modulated sync pulse waveform, (b), (c), (d) OOK modulated Manchester code with the duty factors of 10%, 50%, 90%, respectively.

HSSHBT_2019_v28n3_191_f0010.png 이미지

Fig. 10. Observed waveforms in the VLC receiver. (a) OOK modulated sync pulse waveform, (b) Recovered base-band sync pulse, (c) OOK modulated Manchester code waveform, (d) Recovered base-band Manchester code, and (e) Recovered NRZ code data.

HSSHBT_2019_v28n3_191_f0011.png 이미지

Fig. 11. Circuit boards used in experiments.

HSSHBT_2019_v28n3_191_f0012.png 이미지

Fig. 2. Average LED optical power versus duty factor.

References

  1. A. M. Cailean and M. Dimian, "Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey", IEEE Commun. Surv. Tutor., Vol. 19, No. 4, pp. 2681-2703, 2017. https://doi.org/10.1109/COMST.2017.2706940
  2. V. P. Rachim, Y. Jiang, H. S. Lee, and W. Y. Chung, "Demonstration of long-distance hazard-free wearable EEG monitoring system using mobile phone visible light communication", Opt. Express, Vol. 25, No. 2, pp. 713-719, 2017. https://doi.org/10.1364/OE.25.000713
  3. X. Ma, K. J. Lee, and K. S. Lee, "Appropriate modulation scheme for visible light communication systems considering illumination", Electron. Lett., Vol. 48, No. 18, pp. 1137-1139, 2012. https://doi.org/10.1049/el.2012.2195
  4. S. Rajagopal, R. D. Roberts, and S. K. Lim, "IEEE 802.15.7 visible light communication: modulation schemes and dimming support", IEEE Commun. Mag., Vol. 50, No. 3, pp. 72-82, 2012. https://doi.org/10.1109/MCOM.2012.6163585
  5. Y. K. Cheong, X. W. Ng, and W. Y. Chung, "Hazardless biomedical sensing data transmission using VLC", IEEE Sensors J., Vol. 13, No. 9, pp. 3347-3348, 2013. https://doi.org/10.1109/JSEN.2013.2274329
  6. S. H. Lee, "A passive transponder for visible light identification using a solar cell", IEEE Sensors J., Vol.15, No.10, pp. 5398-5403, 2015. https://doi.org/10.1109/JSEN.2015.2440754
  7. C. Yao, Z. Guo, G. Long, and H. Zhang, "Performance Comparison among ASK, FSK and DPSK in Visible Light Communication", Opt. Photonics J., Vol. 6, pp.b150-154, 2016. https://doi.org/10.4236/opj.2016.68B025
  8. F. Yuan, "Design techniques for ASK demodulators of passive wireless microsystems: a state-of-the-art review", Analog Integr. Circuit Signal Process, Vol. 63, No. 1, pp. 33-45, 2010. https://doi.org/10.1007/s10470-009-9379-6