• Title/Summary/Keyword: NOXa

Search Result 11, Processing Time 0.03 seconds

Mcl-1 is a Binding Partner of hNoxa (Mcl-1 단백질은 Noxa 단백질의 결합 파트너이다.)

  • Park, Sun-Young;Kim, Tae-Hyoung
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1063-1067
    • /
    • 2007
  • The Bcl-2 family proteins play critical roles in regulation of apoptosis, and the balanced interaction of pro- and anti-death members is a key factor in determining the cell fate. Noxa, a BH3-only Bcl-2-family member, has been originally identified as a target gene of p53. To understand the mechanism by which human Noxa (hNoxa) regulates the cell death, we screened the hNoxa binding partner using the yeast two hybrid screening and found that anti-death protein Mcl-1 binds to hNoxa. The binding of hNoxa to Mcl-1 was confirmed by immunoprecipitation in human colon cancer cell line HCT 116 cells. Mcl-1 significantly inhibited the hNoxa-induced cell death in HCT 116 cells. During the cell death induced by hNoxa, Mcl-1 protein was degraded. Its degradation was inhibited by z-VAD-fmk, a pancaspase inhibitor, suggesting caspase is responsible for Mcl-1 degradation in response to hNoxa. Together, the results indicate that hNoxa binds to Mcl-1 that is degraded by cas-pases during hNoxa-induced cell death.

The Effect of Lipopolysaccharide on Noxa Expression Is Mediated through IRF1, 3, and 7

  • Piya, Sujan;Kim, Tae-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.491-497
    • /
    • 2018
  • Lipopolysaccharide (LPS), a component of the cell wall of gram-negative bacteria, elicits the secretion of cytokines, such as interferons, that stimulate the host defense system. Previously, we demonstrated that interferons induce interferon regulatory factors (IRFs) 1, 3, and 7, which regulate the transcription of Noxa and alter the expression profiles of Bcl-2 family proteins in tumors. However, the immediate consequences of LPS stimulation on Noxa and BH3 expression in tumor cells remain uncharacterized. In this study, we determined that LPS induced Noxa expression in CT26 cells. Furthermore, studies in HCT116 parental and HCT116 p53-deficient cells revealed that LPS-mediated Noxa was independent of p53. Meanwhile, IRF1, 3, and 7 in CT26, HCT116 parental, and HT116 p53-deficient cells were upregulated by LPS stimulation, suggesting that LPS induces the expression of these IRFs in a p53-independent manner. The responsiveness of IRF1, 3, 4, and 7 binding to the Noxa promoter region to LPS indicated that IRF1, 3, and 7 activated Noxa expression, whereas IRF4 repressed Noxa expression. Together, these results suggest that LPS directly affects Noxa expression in tumor cells through IRFs, implicating that it may contribute to LPS-induced tumor regression.

Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola

  • Choi, Yoon-E;Lee, Changsu;Goodwin, Stephen B.
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.

Differential Efflux of Mitochondrial Endonuclease G by hNoxa and tBid

  • Seo, Young-Woo;Park, Sun-Young;Yun, Cheol-Won;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.556-559
    • /
    • 2006
  • The Bcl-2 family of proteins regulates mitochondrial functions during cell death by modulating the efflux of death-promoting proteins such as cytochrome c and endonuclease G. Upon the binding of death ligands to their receptors, caspase-8 cleaves Bid, a BH3-only protein, into tBid that causes the mitochondrial damages resulting in the release of cytochrome c and endonuclease G. Also, another BH3-only protein, hNoxa, has been shown to induce the efflux of cytochrome c from the mitochondria. Whether the efflux proteins from the mitochondria in response to tBid or hNoxa are the same or different, however, has not been addressed. We have demonstrated that endonuclease G activities are not detectable among the proteins released from isolated mitochondria by hNoxa but are detectable in that by tBid. These results suggest that the efflux of proteins from the mitochondria are differentially modulated by tBid and hNoxa.

Poly(ADP-ribosyl)ation of p53 Contributes to TPEN-Induced Neuronal Apoptosis

  • Kim, Hyun-Lim;Ra, Hana;Kim, Ki-Ryeong;Lee, Jeong-Min;Im, Hana;Kim, Yang-Hee
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.312-317
    • /
    • 2015
  • Depletion of intracellular zinc by N,N,N,N-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that chemical inhibition or genetic deletion of PARP-1 markedly attenuated TPEN-induced apoptosis of cultured mouse cortical neurons. Poly(ADP-ribosyl)ation of p53 occurred starting 1 h after TPEN treatment. Suggesting the critical role of PARP-1, the TPEN-induced increase of stability and activity of p53 as well as poly(ADP-ribosyl)ation of p53 was almost completely blocked by PARP inhibition. Consistent with this, the induction of downstream pro-apoptotic proteins PUMA and NOXA was noticeably reduced by chemical inhibitors or genetic deletion of PARP-1. TPEN-induced cytochrome C release into the cytosol and caspase-3 activation were also blocked by inhibition of PARP-1. Taken together, these findings indicate that PARP-1 is essential for TPEN-induced neuronal apoptosis.

임신 18일째 ICR 마우스에 있어서 체중과 골화와의 상관성

  • 정운구;김정란;한상섭
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.319-319
    • /
    • 1994
  • 의약품등의 배아(태자) 독성물질에 의해서 유도될 수 있는 태자체중의 감소와 골화지연은 실험동물을 이용한 생식독성 시험에 있어서 자궁내 발육지연 (intrautering growth retardation)으로 평가된다. 태자체중은 측정이 매우 용이한 변수에 속하지만 골화지연의 평가에는 유해인자 (noxa) 의 작용시 기형이 유발되지 않는 골격부위가 가장 적합한데, 어느 골격부위가 발육지연 효과의 평가를 위하여 가장 적합한지를 알아내기 위해서는 태자체중과 골화의 상관성 조사가 필수적이다. 연구결과 골격형성은 골격부위에 따라 큰 차이를 보였는데, 크게는 거의 골화가 종료된 부위 (예: 흉골) 와 골화가 진행증인 부위 (예: 천미추) 로 구분되었고 주요 골격부위의 골화와 태자체중의 관계를 조사한 바, 골격부위에 따라서 상이한 상관관계를 나타내었다. 그런데 본 연구에서 나타난 바로는 ICR 마우스에 있어서 천미추의 골화짐 수가 태자제중과 가장 높은 상관성을 나타내었다. 또한 천미추의 변이계수는 타 골격부위에 비해서 그다지 높지 않았다. 따라서 ICR 마우스를 이용한 생식독성시험에 있어서 천미추의 골화 진행도는 의약품등에 의해 유도될 수 있는 발육지연 효과의 평가를 위한 가장 적합한 지표라고 판단된다.

  • PDF

Release of Cytochrome c from Isolated Mitochondria by Etoposide

  • Park, Jung-Hee;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.619-623
    • /
    • 2005
  • The efficacy of chemotherapeutic agents on tumor cells has been shown to be modulated by tumor suppressor gene p53 and its target genes such as Bcl-2 family members (Bax, Noxa, and PUMA). However, various chemotherapeutic agents can induce cell death in tumor cells that do not express the functional p53, suggesting that some chemotherapeutic agents may induce cell death in a p53-independent pathway. Here we showed that etoposide can induce the similar degree of cell death in p53-deficient HCT 116 cells, whereas 5'-FU-mediated cell death is strongly dependent on the existence of functional p53 in HCT 116 cells. Further, we provide the evidence that etoposide can induce the cytochrome c release from isolated mitochondria, and etoposide-induced cytochrome c release is not accompanied with the large amplitude swelling of mitochondria. These data suggest that etoposide can directly induce the mitochondrial dysfunction irrespective of p53 status, and it may, at least in part, account for the p53-independent pathway in cell death induced by chemotherapeutic agents.

Mitochondrial Targeting Domain Homologs Induce Necrotic Cell Death Via Mitochondrial and Endoplasmic Reticulum Disruption

  • Park, Junghee;Han, Ji-Hye;Myung, Seung-Hyun;Chung, Hea-jong;Park, Jae-il;Cho, Ju-Yeon;Kim, Tae-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.875-881
    • /
    • 2021
  • The mitochondrial targeting domain (MTD) of Noxa contributes to its mitochondrial localization and to apoptosis induction. As a peptide, MTD fused with octa-arginine (R8), a CPP, induces necrosis related to intracellular calcium influx and destruction of mitochondria and endoplasmic reticulum. We searched for homologs of MTD, and compared their cell killing capability when fused with R8. Three of the seven peptides triggered cell death with similar mechanisms. The comparative analysis of peptide sequences showed that four amino acid sites of MTD are critical in regulating necrosis, suggesting the potential to generate artificial, adjustable cytotoxic peptides, which could be effective medicines for many diseases. Thus, homologs functionality could hint to the functions of their belonging proteins.

Anti-proliferation Effect of Coscinoderma sp. Extract on Human Colon Cancer Cells (Coscinoderma sp.의 대장암세포 증식 억제 효과)

  • Choi, Ki Heon;Jung, Joohee
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.294-298
    • /
    • 2016
  • Natural products are attractive as the source of new drug development. Especially, numerous unknown marine bioresources are an object of attention because the ocean occupies three fourth of the earth. Survival of marine bioresources in extreme environment may induce the production of biological active compounds. As previous study, we examined over 40 specimens of marine sponges collected from Micronesia and screened their anti-proliferative activities in various cancer cell lines. Among them, we investigated Coscinoderma sp.'s activity and mechanism in human colon carcinoma HCT116 and RKO cells. Furthermore, we also used the p53-knockout of HCT116 cells and the p53 loss of RKO cells for elucidating the role of p53. Coscinoderma sp. inhibited cellular viability independently of the p53 status. Therefore, we compared the expression level of cell death-related proteins by Coscinoderma sp. in HCT16 and in HCT116 p53KO cells. Coscinoderma sp. increased p53 level and NOXA levels and induced apoptosis under the condition of p53 existence. On the other hand, Coscinoderma sp. increased p21 and mTOR levels in HCT116 p53KO cells. These results suggest that Coscinoderma sp. induced anti-proliferation effect through different pathway depending on p53 status.

Induction of NADPH oxidases and antioxidant proteins by Porphyromonas gingivalis in KB cells (Porphyromonas gingivalis 감염된 구강상피세포에서 NADPH oxidase와 항산화단백의 발현)

  • Kim, Min-Jeong;Chung, Hyun-Ju;Park, Byung-Ju;Park, Hae-Ryoung;Lee, Tae-Hun
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.863-878
    • /
    • 2006
  • Porphyromonas gingivalis는 치주질환을 야기하는 독성세균으로서, 구강상피세포에 p. gingivalis가 감염되었을 때, 세포형태에 변화를 초래함으로 인해 방어기작이 작동하게 된다. 치주질환과 관련되어 생성된 활성 산소종의 소거에 관여하는 항산화성분은 p. gingivalis 이 감염된 구강상피세포에서 그 분포와 발현수준이 달라지리라 예상된다. 따라서 이번 연구에서는 구강상피세포(KB 세포)에 p. gingivalis가 감염되었을 때 야기되는 활성산소종과 이를 소거하는 역할을 하는 항산화단백들의 역할들을 규명하고자 하였다. 활성산소종 형성을 조절하는 NADPH oxidase 중 NOX4와 Rac1 전사체는 구강상피세포에서 p. gingivalis세균에 의해 증가하였으며 $gp91^{phox}$, Rac2, $p47^{phox}$$p67^{phox}$는 세균에 의한 변화가 관찰되지 않았다. 반면에 $p40^{phox}$ 전사체는 감소하는 경향을 보였다. NOX1 전사체는 p. gingivalis 처리 30분 후 감소하였다가 60분 후에는 다시 증가하는 양상을 보였다. 같은 시간에 NOX 활성화 단백인 NOXA1은 감소하고, NOX 구성단백질인 NOXO1은 증가하는 경향을 보였다. p. gingivalis가 감염된 구강상피세포를 방어하는 항산화단백 발현수준을 평가한 결과, SOD1, 2, 3 모두 p. gingivalis 처리시간에 따라 증가하는 양상을 보였다. GPx 발현 양상도 SOD와 유사하게 나타났다. $H_2O_2$를 소거하는 Prx는 감염된 KB 세포에서 Prx4와 Prx5가 4-6배 증가하는 것을 알 수 있었다. 반면 endocytosis 과정 중 $H_2O_2$ 생산은 변화되지 않았다. 이번 연구의 결과, p. gingivalis의 감염은 KB 세포의 NOX4와 Rac1의 NADPH oxidase 발현을 증가시켰으며, NOX1은 NOXA1과 NOXO1의 조절에 의해 영향을 받음을 알 수 있었다. 또한 항산화기작으로는 SOD, GPx, Prx가 증가하였는데, 이것은 Prx4와 Prx5가 중요한 역할을 할 것을 시사하였다.