DOI QR코드

DOI QR Code

Differential Efflux of Mitochondrial Endonuclease G by hNoxa and tBid

  • Seo, Young-Woo (Department of Biochemistry and Molecular Biology, Chosun University School of Medicine) ;
  • Park, Sun-Young (Department of Biochemistry and Molecular Biology, Chosun University School of Medicine) ;
  • Yun, Cheol-Won (School of Life Science and Biotechnology, Korea University) ;
  • Kim, Tae-Hyoung (Department of Biochemistry and Molecular Biology, Chosun University School of Medicine)
  • Received : 2006.02.14
  • Accepted : 2006.05.19
  • Published : 2006.09.30

Abstract

The Bcl-2 family of proteins regulates mitochondrial functions during cell death by modulating the efflux of death-promoting proteins such as cytochrome c and endonuclease G. Upon the binding of death ligands to their receptors, caspase-8 cleaves Bid, a BH3-only protein, into tBid that causes the mitochondrial damages resulting in the release of cytochrome c and endonuclease G. Also, another BH3-only protein, hNoxa, has been shown to induce the efflux of cytochrome c from the mitochondria. Whether the efflux proteins from the mitochondria in response to tBid or hNoxa are the same or different, however, has not been addressed. We have demonstrated that endonuclease G activities are not detectable among the proteins released from isolated mitochondria by hNoxa but are detectable in that by tBid. These results suggest that the efflux of proteins from the mitochondria are differentially modulated by tBid and hNoxa.

Keywords

References

  1. Yin, X. M. (2000) Signal transduction mediated by Bid, a prodeath Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell. Res. 10, 161-167. https://doi.org/10.1038/sj.cr.7290045
  2. Wang, X. (2001) The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922-2933.
  3. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058. https://doi.org/10.1126/science.288.5468.1053
  4. Qin, J. Z., Ziffra, J., Stennett, L., Bodner, B., Bonish, B. K., Chaturvedi, V., Bennett, F., Pollock, P. M., Trent, J. M., Hendrix, M. J., Rizzo, P., Miele, L. and Nickoloff, B. J. (2005) Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res. 65, 6282-6293. https://doi.org/10.1158/0008-5472.CAN-05-0676
  5. Fernandez, Y., Verhaegen, M., Miller, T. P., Rush, J. L., Steiner, P., Opipari, A. W., Jr., Lowe, S. W. and Soengas, M. S. (2005) Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res. 65, 6294-6304. https://doi.org/10.1158/0008-5472.CAN-05-0686
  6. Kim, J. Y., Ahn, H. J., Ryu, J. H., Suk, K. and Park, J. H. (2004a) BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J. Exp. Med. 199, 113-124. https://doi.org/10.1084/jem.20030613
  7. Perez-Galan, P., Roue, G., Villamor, N., Montserrat, E., Campo, E. and Colomer, D. (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107, 257-264. https://doi.org/10.1182/blood-2005-05-2091
  8. Seo, Y. W., Shin, J. N., Ko, K. H., Cha, J. H., Park, J. Y., Lee, B. R., Yun, C. W., Kim, Y. M., Seol, D. W., Kim, D. W., Yin, X. M. and Kim, T. H. (2003) The molecular mechanism of Noxainduced mitochondrial dysfunction in p53-mediated cell death. J. Biol. Chem. 278, 48292-48299. https://doi.org/10.1074/jbc.M308785200
  9. Sun, Y. and Leaman, D. W. (2005) Involvement of Noxa in cellular apoptotic responses to interferon, double-stranded RNA, and virus infection. J. Biol. Chem. 280, 15561-15568 https://doi.org/10.1074/jbc.M412630200
  10. Kim, T. H., Zhao, Y., Barber, M. J., Kuharsky, D. K. and Yin, X. M. (2000) Bid-induced cytochrome c release is mediated by a pathway independent of mitochondrial permeability transition pore and Bax. J. Biol. Chem. 275, 39474-39481. https://doi.org/10.1074/jbc.M003370200
  11. Kim, T. H., Zhao, Y., Ding, W. X., Shin, J. N., He, X., Seo, Y. W., Chen, J., Rabinowich, H., Amoscato, A. A. and Yin, X. M. (2004b) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol. Biol. Cell. 15, 3061-3072. https://doi.org/10.1091/mbc.E03-12-0864
  12. Petronilli, V., Cola, C. and Bernardi, P. (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. J. Biol. Chem. 268, 1011-1016.
  13. Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X. and Wang, X. (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell. Biol. 2, 754-761. https://doi.org/10.1038/35036395
  14. Lutter, M., Perkins, G. A. and Wang, X. (2001) The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC Cell. Biol. 2, 22. https://doi.org/10.1186/1471-2121-2-22
  15. Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B. and Korsmeyer, S. J. (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060-2071.
  16. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B. and Korsmeyer, S. J. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730. https://doi.org/10.1126/science.1059108
  17. Li, L. Y., Luo, X. and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. https://doi.org/10.1038/35083620

Cited by

  1. Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression vol.42, pp.4, 2009, https://doi.org/10.5483/BMBRep.2009.42.4.217
  2. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells vol.42, pp.11, 2009, https://doi.org/10.5483/BMBRep.2009.42.11.719
  3. Cytosolic prion protein induces apoptosis in human neuronal cell SH-SY5Y via mitochondrial disruption pathway vol.42, pp.7, 2009, https://doi.org/10.5483/BMBRep.2009.42.7.444
  4. pH-Dependent surface-enhanced resonance Raman scattering of yeast iso-1-cytochrome c adsorbed on silver nanoparticle surfaces under denaturing conditions at pH < 3 vol.42, pp.4, 2009, https://doi.org/10.5483/BMBRep.2009.42.4.223