• Title/Summary/Keyword: NO gas

Search Result 3,471, Processing Time 0.028 seconds

Fabrication of low power NO micro gas senor by using CMOS compatible process (CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작)

  • Shin, Han-Jae;Song, Kap-Duk;Lee, Hong-Jin;Hong, Young-Ho;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

Study on Characteristics of Catalytically Supported Thermal Combustion for Gas Turbine (가스터어빈용 촉매연소기를 위한 촉매-화염 복합 연소 특성연구)

  • Lee, Kyung-Wong;Chung, Nam-Jo;Ryu, In-Soo;Cho, Sung-June;Kang, Sung-Kyu;Chun, Kwang-Min;Song, Kwang-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.73-82
    • /
    • 2001
  • The characteristics of the catalytically supported thermal combustion with Pd-based catalyst using the bench scale high pressure combustor has been investigated up to 7 atm. The emission of $NO_{\chi}$ depends on the preheating temperature and the excess air ratio. Most $NO_{\chi}$ emission seems to come from the pre-burner for the preheating of the inlet gas. Decreasing excess air ratio in the inlet gas below 1.5 results in the stable catalytically supported thermal combustion in the post combustion region while the $NO_{\chi}$ emission increased up to 15 ppm. Further, the increase of the pressure shows the dramatic increase of the emission CO and THC. However, the $NO_{\chi}$ emission decreased slightly due to the lower combustion temperature at the high pressure.

  • PDF

$NO_2$Gas Detection Characteristics of Octa-dodecyloxy Copper-phthalocyanine Langmuir-Blodgett(LB) Films

  • Koo, Ja-Ryong;Kim, Young-Kwan;Kim, Jung-Soo
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.78-80
    • /
    • 1998
  • Metallo-phthalocyanines(MPcs) are very sensitive to toxic molecules such as electron affinitive NO2 gas and also chemically and thermally stable since losts of MPcs have been studied for the potential chemcial gas sensors for $NO_2$ using their electrical conductivity. In this study, thin films of octa-dodecyloxy copper -phthalocyanine were prepared by Langmuir-Blodgett(LB) method and characterized by using UV/Vis absorption spectroscopy, and ellipsometry. It was found that the proper transfer surface pressure for the film deposition was 25mN/m and the limiting area per molecule was $112\AA$/molecule. The film thickness of one layer was $64\AA$. Current-voltage(I-V) characteristics of these films were investigated as a function of film thickness.

  • PDF

The Sensing Characteristics of $WO_3$ Thin Films for $NO_x$ Gas Detection with the Change of Deposition Methods (증착방법에 따른 $NO_x$가스 감지용 $WO_3$박막센서의 특성 변화 연구)

  • 김태송;김용범;유광수;성기숙;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.387-393
    • /
    • 1997
  • In order to apply WO3 thin films to the semiconducting NOx gas sensors as a sensing material, which have been expected to show good electrical properties, such as large sensitivity, rapid responsibility, and high selectivity, the fabrication method and their sensing characteristics were studied. The variations of surface morphologies, crystallographic orientations and crystallinity with the WO3 thin film growing methods thermal evaporation and DC sputtering methods were investigated by using scanning electron microscopy (SEM) and X-ray diffraction(XRD) analysis. As a result of sensitivity (Rgas/Rair) measurements for the 5 ppm NO2 test gas, the sensitivity values were 113 for the sputtered films and 93 for the evaporated films. It was also observed that the recovery rate of a sensing signal after measuring sensitivity was faster in the sputtered films than in the evaporated films.

  • PDF

Fabrication and Gas-Sensing Characteristics of $NO_x$ Sensors using $WO_3$ Thin Films ($WO_3$ 박막을 이용한 $NO_x$ 센서의 제조 및 가스감도 특성)

  • 유광수;김태송;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1369-1376
    • /
    • 1995
  • The WO3 thin-film NOx sensor which is of practical use and includes the heater and the temperature sensor was fabricated. The WO3 thin films as a gas-sensing layer was deposited at ambient temperature in a high-vacuum resistance heated evaporator. The highest sensitivity of the WO3 thin-film sensor to NOx was obtained under the condition of the annealing temperature of 50$0^{\circ}C$ and the operating temperature of 30$0^{\circ}C$. The gas sensing characteristics of this sensor was excellent, i.e. high sensitivity (Rgas/Rair in 3 ppm NO2=53) and fast response time (4 seconds).

  • PDF

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network (SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서)

  • Kim, Yoojong;Bak, So-Young;Lee, Jeongseok;Lee, Se-Hyeong;Woo, Kyoungwan;Lee, Sanghyun;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate (열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구)

  • Kwak, Cheol Hwan;Seo, Sang Wan;Kim, Min Il;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • In this study, a sensor for detection of nitric oxide (NO) gas was developed using petroleum pitch-based activated carbon which was synthesized from pyrolysis fuel oil (PFO). Polyethylene terephthalate (PET) was added to increase molecular weight by stimulating a polymerization of components in PFO during the pitch synthesis process. The increase in the molecular weight of pitch contributed to the improvement of textural properties of activated carbon, such as the specific surface area and micropore volume. It also enhanced the sensitivity of NO gas sensor based on the activated carbon. In addition, the effect of PET addition during the pitch synthesis on the surface oxygen content and conductivity of activated carbon was investigated. Finally, the correlation of the sensitivity with physical properties of activated carbon was analyzed.

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors (웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.