• Title/Summary/Keyword: NO$^{[-10]}$ $_3$-N

Search Result 5,961, Processing Time 0.044 seconds

Application Effects of Some Nitrogen Fertilizers Forms for the Growth and Yield of Rice Plant (몇가지 형태(形態)의 질소비료시비(窒素肥料施肥)가 수도(水稻)의 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Park, Chang Keu;Yuk, Chang Su;Cho, Gwang Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.78-88
    • /
    • 1985
  • Nitrogen fertilizer effectiveness on rice production was studied to evaluate the different forms and sources. Seven kind of nitrogen fertilizers were applied in two levels, 15 and 30 kg per 10a on Jinjubyeo (Japonica type) in silt loam paddy soil of pot cultivation. The results were summerized as follows; 1. pH in soils was decreased with enhancement of ammonium sulfate application in $NH_4-N$, but it was increased with times after nitric-acid application and PH change in soil was not remarkable when $NO_3-N$ with accessory component was applied. 2. $NH_4-N$ contents in soil were the lowest at 2 weeks after application in N 15kg/10a regardless of different sources of nitrogen fertilizer. $NO_3-N$, in N 30kg/10a, was decreased continuously until 4 weeks, while $NH_4-N$, Urea-N were at minimum during 2-3 weeks. 3. Growth of culm length and straw weight applied with AN (Ammonium Nitrate), AS (Ammonium Sulfate) and urea were superior to the form of nitrate. While NA (Nitric Acid), PN (Potassium Nitrate) and CN (Calcium Nitrate) plot of the $NO_3-N$ was the dominant fertilizers for root elongation. 4. Brown rice yields were increased dominantly by $NH_4-N$ application such as AS or AP than $NO_3-N$ pot. But the yields in case of $NO_3-N$ application CN, PN and NA were decreased. 5. N, P, Mg and Mn content of straw ranked the effectiveness of nitrogen forms as $NH_4-N$, Urea-N and $NH_4-N+NO_3-N$, while K, Ca and $SiO_2$ content of straw in $NO_3-N$ fertilizer plot were high while N, P, Mg, Mn, Fe and Mg were low. 6. Increament of nitrogen absorption in straw was stimulated by enhancement of phosphorous absorption and the growth and yield of rice plant were increased. Absorption of N, P, Ca and Mg was decreased by CN application. Absorption of N, P and Mg also was decreased by $NO_3-N$ application and N, P, Mg or Ca content were seemed to simulated the growth and yield of rice plant. 7. $SiO_2$, Zn and Fe contents of the root at harvest stage were higher than those of the straw. N, P, Mg, Mn, Zn and Fe contents were high in $NH_4-N$ and Urea treatment. While K, ca and $SiO_2$ contents, however, were high in $NO_3-N$ treatment.

  • PDF

A Study on the Behavior of Surface-Applied Urea with $^{15}N$ Isotope Dilution Technique in Paddy Soil (논토양에서 중질소(N-15)를 이용한 표면시용 요소로부터 유래하는 질소의 행동에 관한 연구)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.277-286
    • /
    • 1994
  • The pot experiment using $^{15}N$ isotope dilution technique was carried out to calculate the balance of nitrogen of surface applied urea in the rice-soil system. The $^{15}N$ concentration was determined by stable isotope ratio mass spcetrometer (model: VG ISO-GAS MM622). In the pots with $^{15}N$ labeled urea application at the rates of 15 and 30 kg N/10a, the percentage of nitrogen derived from fertilizer (NDFF) in rice was higher at the rate of 30 kg N/10a (average 89%) than at the rate of 15 kg N/10a (average 64%). However, the recovery as percentage of fertilizer N by rice was higher at the rate of 15 kg N/10a (65.5%) than at the rate of 30 kg N/10a (54.2%). The percentage of the fertilizer N remained in extractable inorganic N form at the rates of 15 and 30 kg N/10a were $13.5%\;(NH_4-N\;5.53%,\;NO_3-N\;7.99%)$ and $16.5%\;(NH_4-N\;7.49%,\;NO_3-N\;8.98%)$ in unplanted soil, and $2.0%\;(NH_4-N\;0.63%,\;NO_3-N\;1.32%)$ and$2.3%\;(NH_4-N\;0.87%,\;NO_3-N\;1.40%)$ in soil planted to rice, respectively. The dominant form of inorganic-N in soil after harvest was $NO_3-N$ form rather than $NH_4-N$ form regardless of urea application rate or rice cultivation. The percentage of the fertilizer N remained in organic N form at the rates of 15 and 30 kg N/10a were 65.0 and 41.8% in unplanted soil, and 23.7 and 26.9% in soil planted to rice, respectively. In conclusion, the efficiency of surface-applied urea was greater at the rate 15 kg N/10a than at the rate of 30 kg N/10a.

  • PDF

Effect of Nitrogen Compounds and Organic Carbon Concentrations on $N_2O$ Emission during Denitrification (탈질에서 질소성분 및 유기탄소 농도가 $N_2O$ 배출에 미치는 영향)

  • Kim, Dong-Jin;Kim, Heon-Ki;Kim, Yu-Ri
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.134-141
    • /
    • 2011
  • The effects of the compounds and concentrations of nitrogenous electron acceptor, the ratio of electron donor/electron acceptor (C/N), and the complexity of electron donor on the emission of $N_2O$ during wastewater denitrification were quantitatively investigated in this study. The higher ${NO_3}^-$ and ${NO_2}^-$ concentrations, the more $N_2O$ emission was observed. ${NO_2}^-$ has strong effect on $N_2O$ emission as it emitted morc $N_2O$ than ${NO_3}^-$, 50 mg/L of ${NO_2}^-$-N gave the highest conversion (9.3%) and yield (9.8%) of $N_2O$ while ${NO_3}^-$-N (50 mg/L) gave 5.6% conversion and 11.0% yield. Lower C/N ratio decreases nitrogen removal efficiency, but it increases the conversion of $N_2O$ because of the incomplete denitrification by the limited organic carbon. When real domestic wastewater is used as the electron donor of the denitrification, $N_2O$ emission is reduced to 1/10 of the emission when single carbon (acetate) is used. It is thought that multiple carbon source utilizes many denitrification pathways and it seems to be helpful for the reduction of $N_2O$ emission.

Effect of the Application of Sucrose on Rapid Decrease of Soil Inorganic Nitrogen (Sucrose 처리가 토양 무기태질소의 신속 감소에 미치는 영향)

  • Ku, Hyun-Hwoi;Lim, Woo-Jin;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.424-429
    • /
    • 2010
  • To solve the problems with excessive accumulation of soil inorganic N and resulting saline soils from overuse of nitrogen fertilizer, the effect of sucrose application on decrease of soil inorganic N content and electrical conductivity (EC) was studied. Sucrose treatment greatly reduced ${NH_4}^+$-N content in soil. The amount of reduction was greater as the amount of sucrose treatment was increased. When ${NH_4}^+$-N content was reached the lowest point (about 10 mg $kg^{-1}$or lower), the C/N ratio, which determines the amount of sucrose treatment, was around 10 regardless of initial ${NH_4}^+$-N content. For the rate of ${NH_4}^+$-N reduction 15~36 hours was required to reduce the initial ${NH_4}^+$-N content to half, and 36~69 hours to lower ${NH_4}^+$-N content to the lowest point (about 10 mg $kg^{-1}$or lower). In addition, sucrose treatment greatly lowered ${NO_3}^-$-N content. In case of C/N ratio above 10, initial ${NO_3}^-$-N content of 348 mg $kg^{-1}$ was reduced to the lowest of 14~21 mg $kg^{-1}$. As for the rate of ${NO_3}^-$-N reduction by sucrose treatment, it took 36~60 hours for ${NO_3}^-$-N content to reach the lowest point for C/N ratio of 10 or higher, and it took 3 weeks, comparably longer time, for C/N ratio of 5. Lowering soil EC from sucrose treatment showed the same trend as ${NO_3}^-$-N content. As an important energy and carbon source for humankind, sugar should not be wasted and must be carefully applied to soil. In principle, the best way of preventing salt accumulation in soil is to optimize the fertilizer input. However, when over-fertilization should be dealt with, the sucrose treatment would be a possible and effective counter-measure to reduce overdosed nitrogen sources in soil.

Changes In Concentrations of Urea-N, NH4-N and NO3-N in Percolating Water During Rice Growing Season (수도재배포장에서 침투수의 Urea-N, NH4-N 및 NO3-N의 농도변화)

  • Lee, Sang-Mo;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.160-164
    • /
    • 1995
  • This study was conducted to obtain quantitative data on the behavior of surface-applied urea to a paddy field which would help to protect against environmental pollution as well as to increase the efficiency of nitrogen fertilizer. The percolating water samples were collected with porous ceramic cups installed at 25, 50 and 75cm depths in a paddy field during the rice growing season(June 1992-September 1992) and analyzed for urea-N. NHAN and $NO_3-N$. In the paddy field to which urea fertilizer was applied at the rates of 12 and 24kg N/10a, the surface-applied urea was detected even at 75cm depth as the form of urea-N upto 12days after application. The maximum concentrations of urea-N in the percolating water sampled at 25, 50 and 75cm depths were the same irrespective of soil depth and the values were 0.06 and $0.12{\mu}g/m{\ell}$ for the application rates of 12 and 24kg N/10a respectively. The concentrations of $NH_4-N$ gradually decreased with time during the vegetative growth period : thereafter. the concentrations remained nearly constant. The maximum concentrations of $NH_4-N$ at 25cm depth were 1.2 and $5.6{\mu}g/m{\ell}$ for 12 and 24kg N/10a rate respectively. The $NO_3-N$ concentrations of percolating water ranged 0.1~0.5 and $0.2{\sim}0.5{\mu}g/m{\ell}$ for urea application rates of 12 and 24kg N/10a respectively. The nitrate concentration data suggest that nitrification process occurred continuously in paddy field during the rice growing season.

  • PDF

Monitoring of Nitrogen Ion in Nitrifying Biofilm using an Ion Selective Microelectrode (이온선택성 미소전극을 이용한 질산화 생물막내의 질소 이온의 농도 모니터링)

  • Seon, Ji-Yun;Byun, Im-Gyu;Lee, Tae-Ho;Park, Tae-Joo
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • An ion selective microelectrode (ISME) was fabricated to measure concentrations of ammonium (${NH_4}^+$-N) and nitrate (${NO_3}^-$-N) according to the depth of nitrifying biofilm. The limits of detectability and validity of results were investigated to evaluate the ISME. The electromotive force (EMF) was directly proportional to the ion concentration, and average detection limits of ${NH_4}^+$ and ${NO_3}^-$ ISME were $10^{-5.14}$ and $10^{-5.18}$ M, respectively. The concentrations of ${NH_4}^+ $-N and ${NO_3}^-$-N in various depths on the nitrifying biofilm were measured by the ISME. When a modified Ludzack-Ettinger (MLE) process was operated at an HRT of 6 h, concentration gradients of ${NH_4}^+$-N in the bulk solution and biofilm at depths of $100\;{\mu}m$ decreased by $70\;{\mu}M$, while ${NO_3}^-$-N increased by $101\;{\mu}M$ and remained constant thereafter. At an HRT of 4 h, concentration gradients of ${NH_4}^+$-N at depths of $500\;{\mu}m$ decreased by $160\;{\mu}M$ and ${NO_3}^-$-N increased by $162;{\mu}M$ and remained constant thereafter. As HRT decreased, the concentration gradients of ${NH_4}^+$-N and ${NO_3}^-$-N between bulk solution and biofilm was higher due to the increase of nitrogen load. Also, the concentration gradients of the ${NH_4}^+$-N and ${NO_3}^-$-N of biofilm in the second aerobic tank were lower than those of the first aerobic tank, suggesting differences of nitrogen load and concentrations of DO between the first and second aerobic tank.

Acute Nitrate Nitrogen Toxicity in Juvenile Blackhead Seabream Acanthopagrus schlegelii (질산성 질소가 감성돔(Acanthopagrus schlegelii) 치어에 미치는 급성 독성 영향)

  • Seo, Seok;Choi, Eun Ji;Park, JeongHwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.268-273
    • /
    • 2019
  • This study evaluated acute nitrate nitrogen ($NO_3-N$) toxicity in juvenile blackhead seabream Acanthopagrus schlegelii. Seventy juveniles (Trial A, $7.1{\pm}0.6g$) and nine juveniles (Trial B, $71.3{\pm}3.5g$) per 70 L tank were exposed to $NO_3-N$ concentrations of 0, 500, 1500, 2500, 3500, and 4500 mg/L and 0, 600, 1200, 1800, 2400, and 3000 mg/L, respectively, in triplicate for 7 days. In Trial A, all fish exposed to 3500 and $4500mg\;NO_3-N/L$ died within 48 h; in Trial B, all fish exposed to $3000\;NO_3-N/L$ died after 120 h. The $96\;LC_{50}$ and $168\;LC_{50}$ were 2505 and $1806mg\;NO_3-N/L$, respectively, in Trial A, and 2663 and $2377mg\;NO_3-N/L$ in Trial B. Large juveniles were more resistant to $NO_3-N$ than small juveniles. The results of acute $NO_3-N$ toxicity studies provide important data for subsequent chronic toxicity studies.

The Effect of Cutting Frequency and Nitrogen Fertilizing Level on NO_3-N Leaching Losses In the Pasture (영년 혼파초지에 있어서 예취빈도와 질소시비수준이 NO$_3$-N의 유실에 미치는 영향)

  • 육완방
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.84-88
    • /
    • 1990
  • This experiment was conducted to evaluate the effect of cutting frequency and nitrogen fertilization on $(NO_3$-N leaching losses under 12 years mixture permanent meadow, The results of this study were summarized as follows: 1. There was no difference in the $(NO_3$-N content of soil water within 1 m soil depth during the whole experimental period. It means that the content of $(NO_3$-N leaching losses was not influenced by botanical composition, cutting frequency and nitrogen fertilization in this experiment. 2. The level of $(NO_3$-N content during the whole experimental period was not in excess of 0.5 ppm level.

  • PDF

PEG에 고정화된 Pseudomonas aeruginosa를 이용한 NH$_4$-N, NO$_3$-N 동시제거에 관한 연구

  • Park, Gyeong-Hun;Jeong, Gyeong-Hun;Choe, Hyeong-Il;Song, Won-Jong;Gang, Yeong-Ju
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.503-506
    • /
    • 2008
  • 질소제거 능력이 있는 Pseudomonas aeruginosa을 고분자물질인 PEG 에 포괄고정화하였으며 제조된 고정화 미생물을 이용하여 질소제거에 미치는 C/N비, 농도, 충진율, 탄소별 제거율을 검토한 결과 다음과 같은 결론을 얻었다. 1) C/N비 10이상이면 NH$_4$-N 와 NO$_3$-N의 동시 제거가 가능하였으며 2) 탄소 원으로는 glucose를 사용하였을 때 NH$_4$-N 와 NO$_3$-N의 동시 제거가 가능하였으나 methanol은 탄소원으로 사용할 수 없었다. 3) 저농도의 NO$_3$-N(50 mg/L)는 완전히 제거 가능하였으나 NH$_5$-N인 경우에는 초기 NH$_4$-N 100 mg/L에서 60%정도만 제거되었다. 4) 연속처리 결과 NH$_4$-N는 HRT 변동에도 불구하고 유출수 농도 변화가 거의 없었으나, 오히려 C/N비를 증가시키면 NH$_4$-N 제거 효율이 높았고, NO$_3$-N인 경우도 마찬가지로 C/N비를 증가시키면 NO$_3$-N 제거 효율이 높았다.

  • PDF

Effects of the Fractionated Raw Cow Manure on Mobility of NO3--N in A Double-Layered Soil Column with Constant Water Head (상존수두상태의 이중토양토주에서 질산태질소 이동에 대한 분쇄우분의 효과)

  • Chung, Doug-Young;Lee, K.S.;Baek, M.J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • Influence of various rates of fractionated raw cow manure on hydraulic conductivity of the soil was observed. The fractionated raw cow manure(hereafter as FRCM) incorporated into soil. The hydraulic conductivity was measured for the double-layered soil while maintaining the water head by 5 cm over the soil surface. The influence on the mobility of $NO_3{^-}$-N transformed from the FRCM was analyzed. The upper layers (Wolgok series) were made with FRCM ranging from 0% to 10.4 % on weight basis for air-dried soil while the organic matter in the bottom layers (Chungwon series) was removed by combustion. The initial bulk densities for both layers were adjusted to $1.25g\;cm^{-3}$. In this experiment the $K_{sat}$ for the upper layer gradually decreased from $4.71{\times}10^{-3}cm\;min^{-1}$ to $1.2{\times}10^{-3}cm\;min^{-1}$ with increasing the rate of the FRCM from 0 % to 10.4%, while the Ksat of the bottom layer was maintained as $3.7cm\;min^{-1}$. For the double-layered soil columns, the $K_{sat}$ decreased with increasing rate of FRCM at the upper layer from $1.7{\times}10^{-3}cm\;min^{-1}$ to $8{\times}10^{-4}cm\;min^{-1}$ as the rate of organic matter increased from 0 % to 10.4 %, while it took almost 7 days to 64 days to obtain the steady state $K_{sat}$ The elution patterns of $NO_3{^-}$-N and $NH_4{^+}$-N showed that the amounts of both $NO_3{^-}$-N and $NH_4{^+}$-N rapidly approached to the maximum ranging from $14.8mmol_c\;kg^{-1}$ to $0.58mmol_c\;kg^{-1}$ as the rate of FRCM decreased from 10.7 % to 0 % which is equivalent to indigenous amount of $NO_3{^-}$-N and $NH_4{^+}$-N. And the amounts of $NO_3{^-}$-N were approximately three or four time than those of $NH_4{^+}$-N, indicating that the transformation rate of $NO_3{^-}$-N was improved by the higher FRCM rate. Thus, the ability of a soil to supply N can be predicted from its mineralization parameters and leaching potentials influenced by water flow regime in soil.

  • PDF