청정환경기술

탈질에서 질소성분 및 유기탄소 농도가 N₂O 배출에 미치는 영향

김동진*, 김헌기, 김유리

한림대학교 환경생명공학과 200-702 강원도 춘천시 옥천동 1

(2011년 4월 20일 접수; 2011년 5월 28일 수정본 접수; 2011년 5월 31일 채택)

Effect of Nitrogen Compounds and Organic Carbon Concentrations on N₂O Emission during Denitrification

Dong-Jin Kim*, Heonki Kim, and Yuri Kim

Department of Environmental Sciences and Biotechnology, Hallym University 1 Okchon, Chunchon, Gangwon 200-702, Korea

(Received for review April 20, 2011; Revision received May 28, 2011; Accepted May 31, 2011)

요 약

본 연구에서는 하폐수 탈질 과정에서 전자수용체의 종류와 농도, 전자공여체/전자수용체(C/N) 비율, 그리고 전자공여체의 복합도(complexity)가 N₂O 배출에 미치는 영향을 정량적으로 조사하였다. 탈질 질소원의 농도가 높을수록 N₂O 배출량도 증 가했으며 NO₂⁻를 이용하는 경우가 NO₃⁻에 비해 N₂O 배출량이 높아 NO₂⁻가 N₂O 배출에 중요한 영향을 미침을 확인하였다. NO₂⁻-N 50 mg/L에서 N₂O-N으로의 전환율 9.3%와 수율 9.8%로 가장 높게 나타났으며 NO₃⁻-N은 50 mg/L에서 전환율이 5.6%, 수율은 11.0%로 나타났다. 유기탄소원/질소(C/N) 비율이 감소하면 질소 제거율은 감소하나 N₂O로의 전환율은 증가 하였다. 실제 하수를 전자공여체로 이용한 경우가 단일 탄소원인 acetate를 이용한 경우에 비해 N₂O 배출량이 1/10 이하로 현저히 감소하였다. 이는 복합 탄소원이 전자공여체로 이용될 경우 단일 탄소원(acetate)에 비해 다양한 탈질 대사(경로)를 이용하고 이것이 N₂O 배출량 저감에 도움이 되는 것으로 판단된다.

주제어: 아산화질소(N2O), 탈질, Acetate, C/N, Nitrite, Nitrate

Abstract : The effects of the compounds and concentrations of nitrogenous electron acceptor, the ratio of electron donor/electron acceptor (C/N), and the complexity of electron donor on the emission of N₂O during wastewater denitrification were quantitatively investigated in this study. The higher NO₃⁻ and NO₂⁻ concentrations, the more N₂O emission was observed. NO₂⁻ has strong effect on N₂O emission as it emitted more N₂O than NO₃⁻. 50 mg/L of NO₂⁻-N gave the highest conversion (9.3%) and yield (9.8%) of N₂O while NO₃⁻-N (50 mg/L) gave 5.6% conversion and 11.0% yield. Lower C/N ratio decreases nitrogen removal efficiency, but it increases the conversion of N₂O because of the incomplete denitrification by the limited organic carbon. When real domestic wastewater is used as the electron donor of the denitrification, N₂O emission is reduced to 1/10 of the emission when single carbon (acetate) is used. It is thought that multiple carbon source utilizes many denitrification pathways and it seems to be helpful for the reduction of N₂O emission.

Keywords : Nitrous oxide (N2O), Denitrification, Acetate, C/N, Nitrite, Nitrate

1. 서 론

질소 순환에서 중요한 단계인 탈질(denitrification)은 질산 성 질소(NO₃⁻-N)가 아질산성 질소(NO₂⁻-N)를 거쳐 질소(N₂) 가스로 환원되는 과정을 말하며 그 반응 경로는 다음의 식 (1)과 같다. $\mathrm{NO_3^-} \rightarrow \mathrm{NO_2^-} \rightarrow \mathrm{NO}~(\mathrm{gas}) \rightarrow \mathrm{N_2O}~(\mathrm{gas}) \rightarrow \mathrm{N_2}~(\mathrm{gas})~(1)$

각각의 단계에서는 질소로의 전자 이동을 촉진하는 환원효 소가 반응에 참여한다. 탈질반응은 NO₃⁻나 NO₂⁻, 전자공여체 가 이용 가능하며 용존산소가 결핍되는 무산소 조건에서 종 속영양미생물에 의해 진행된다. 종속영양미생물은 탈질반응 동안 산소 대신 NO₃⁻나 NO₂⁻를 전자수용체로 사용하고 유기 물을 전자공여체로 이용한다. 탈질반응에서 전자공여체로 이 용되는 유기물은 주로 acetate나 methanol 등이 사용된다. 아

^{*} To whom correspondence should be addressed. E-mail: dongjin@hallym.ac.kr

래 식 (2), (3)은 acetate를 이용한 NO₃⁻와 NO₂⁻의 탈질반응을 화학양론식으로 나타낸 것이다.

NO₂⁻: 8 NO₂⁻ +3 CH₃COOH → 4 N₂ + 6 CO₂ + 2 H₂O + 8 OH⁻ (3)

NO₃⁻ 질소 1 g 당 탈질에 필요로 하는 acetate의 양은 2.7 g이고 NO₂⁻는 질소 1 g 당 1.6 g의 acetate가 필요하여 NO₃⁻가 더 많은 전자공여체를 필요로 함을 알 수 있다. 따라서 탈질 과정에서 생물학적으로 이용 가능한 유기탄소원이 제한될 경 우 위의 탈질 반응식 (1)이 N₂로 완결되지 못하고 NO나 N₂O 에서 반응이 멈추게 되어 N₂O 배출을 증가시키게 된다[1,2]. COD/N 비율이 낮을 경우 전체 질소 부하의 10% 정도가 N₂O 로 배출되어 전자공여체의 제한이 탈질에서 N₂O 배출에 지 대한 영향을 미침을 알 수 있다[3].

탈질반응 동안 생성된 OH⁻는 수중의 CO₂와 반응하여 다 음의 식 (4)와 같이 HCO₃⁻를 형성하여 pH를 다소 증가시키 고 완충용액 역할을 한다.

$$OH^- + CO_2 \rightarrow HCO_3^-$$
 (4)

용존산소가 충분한 호기성 상태에서 탈질 미생물들은 용존 산소를 전자수용체로 사용하여 에너지를 얻지만, 용존산소가 부족하고 NO₂ 와 NO₃ "가 같은 산화된 형태의 질소 화합물이 존재하는 무산소 상태에서는 NO₂ "와 NO₃ "가 전자수용체로 사용한다. 만약 산소가 NO₃ "나 NO₂ "와 같이 존재한다면 미 생물은 전자수용체로 에너지 효율이 높은 산소를 사용한다 [4]. 용존산소는 탈질효소의 합성과 활성을 저해하는데, N₂O 환원효소가 특히 민감하게 저해 받아 탈질과정에 산소가 소 량이라도 존재할 경우 N₂O가 배출된다[5].

본 논문의 목적은 탈질 질소원 농도와 C/N 비율, 그리고 복합탄소원이 포함된 실제 폐수가 N₂O 배출에 미치는 영향 을 알아보는 것이다. 이를 위하여 본 논문에서는 탈질 기능을 가지는 종속영양미생물을 대상으로 질소원으로 농도가 다른 NO₃ 와 NO₂ = 이용하고 전자공여체로는 acetate를 탈질 양 론비 만큼 주입될 때 NO₃ 와 NO₂ 의 농도에 따른 N₂O 배출 영향을 조사하고자 한다. 또한 acetate와 NO₂ 의 C/N 비가 다 른 조건에서 탈질실험을 하여 C/N 비가 N₂O 배출에 미치는 영향에 대하여 검토하고자 한다. 마지막으로 전자공여체로 다양한 유기탄소가 존재하는 실제폐수와 단일 탄소원인 acetate를 주입하여 탄소원의 복합도가 N₂O 배출에 미치는 영 향에 대해서도 조사하고자 한다.

2. 실험재료 및 방법

2.1. 탈질 슬러지 배양을 위한 SBR 운전과 폐수

 Table 1. Operation cycle and condition of the denitrifying SBR for the growth of denitrifying sludge

Operation cycle (min)		Operation condition	
Anoxic (Feeding)	325(320)	DO	0 mg/L
Aeration	0	MLSS	1,700 mg/L
Settling	25	SRT	35 days
Draw	10	HRT	33.75 hr
Total	360	Temp.	24~27 °C

본 논문에서 사용된 SBR은 높이 40 cm, 직경 20 cm로 총 부피가 11 L이며 실제 working volume은 9 L인 원통형의 아 크릴 소재로 제작되었다. 합성 폐수는 유입부에서 반응기 수 면 쪽으로 공급되었고, 처리된 폐수는 반응기 중간 높이의 유 출부를 통해 배출되었다. SBR 각 cycle 당 유입/유출되는 부 피는 1.6 L이며 나머지는 반응기 내에 잔류한다. SBR의 한 cycle은 6시간(360분)이며 325분의 무산소 기간 중에 320분간 페수를 유입하고 25분간 침전 시킨 후 10분간 처리된 폐수를 방류하는 동작이 교대로 반복된다. SBR의 폐수 유입, 중단, 교반과 침전, 배출 등의 운전과 pH 제어는 LabView를 이용하 여 컴퓨터로 제어하였다. 교반기(80 rpm)를 이용하여 반응기 의 슬러지와 폐수가 고루 혼합되도록 하였으며 자세한 운전 조건은 Table 1과 같다. SBR 운전 동안 pH가 7~8 사이에서 유지되도록 NaHCO3, HCl을 첨가하여 조절하였다. 탈질 SBR 은 NO2⁻-N가 240 mg/L, acetate가 380 mg/L이고 미량원소 조 성이 다음과 같은 합성 폐수를 이용하여 탈질 슬러지를 배양 하였다(MgSO4 · H2O, 32 mg/L; KCl, 45 mg/L; NaHPO4 · 12H₂O, 186 mg/L; CaCl₂ · 2H₂O, 45 mg/L; KH₂PO₄, 70 mg/L; FeCl₃ \cdot 6H₂O, 6 mg/L).

2.2. 탈질 회분반응기 운전 및 폐수

탈질 회분반응 실험 장치 개략도는 Figure 1과 같다. 탈질 회분 실험을 위한 탈질 슬러지는 탈질 SBR에서 침전된 슬러 지를 채취하여 총 부피 1 L인 기밀성 유리 반응기에 350 mL 주입하고 질소원과 acetate가 섞인 폐수 50 mL를 회분반응기 에 주입하였다. 폐수의 질소원으로는 NO2 또는 NO3, 탄소 원으로는 acetate를 각 농도에 맞게 25 mL씩 50 mL를 주입하 여 총 부피는 400 mL가 되게 한다. 탈질 회분 반응기의 슬러 지 MLSS는 2,800 mg/L의 정도로 유지되었고 초기 pH는 pH 7~8로 조절하였다. 무산소 조건을 유지하기 위해 탈질반응 2시간 전부터 N2를 20 mL/min 공급하였고 자석교반기로 혼 합하였다. 회분 탈질 반응기에 사용한 합성 폐수는 질소원과 탄소원을 제외한 미량원소 조성은 탈질 SBR의 그것과 같다. 회분 탈질에서는 모두 4가지의 실험이 진행되었다. 첫째는 질소원으로 NO2⁻를 이용하여 그 농도(50, 100, 200, 500 mg N/L)를 달리하여 탈질 특성을 실험하였다. 이때 탈질에 필요 한 탄소원으로는 acetate를 탈질에 필요한 이론당량 만큼인 각각 79, 158, 316, 790 mg/L씩 주입하였다. 두 번째는 질소원

Figure 1. Schematic experimental set-up of the denitrification batch reactor for the emission of N_2O .

으로 NO₃⁻-N의 농도가 50, 100, 200, 500 mg/L인 조건에서 탄 소원으로 acetate를 당량 만큼인 각각 132, 263, 527, 1,317 mg/L 씩 주입하여 실험하였다. 세 번째는 질소원으로 NO₂⁻-N가 50 mg/L인 상태에서 탄소원인 acetate를 이론 탈질 당량의 50% (40 mg/L), 100% (79 mg/L), 200% (158 mg/L)로 달리 주입하 였을 때의 질소제거효율과 N₂O 발생 특성에 대해 실험하였 다. 마지막으로 복합탄소원이 포함된 실제 하수를 주입하여 탈질을 하여 탄소원에 대한 탈질 특성을 비교하였다. 1차침 전지를 거친 하수의 COD는 KMnO₄ 기준 110 mg/L로 각각 25 mg/L인 NO₂⁻-N와 NO₃⁻-N을 탈질하기에 충분한 유기물 을 포함하고 있다. 이때 배출되는 gas는 bubble flow meter로 유량을 측정하고 gas chromatography로 N₂O를 분석하였다. 탈 질 회분실험은 각기 2~3회씩 실시하였으며 그 평균값을 결과 해석에 이용하였다.

2.3. 분석 방법

채취한 액상시료는 0.45 µm와 0.2 µm syringe filter를 이용 하여 여과한 후 NO₂⁻, NO₃⁻는 eluent로 0.5 M Na₂CO₃ + 0.5 M NaHCO₃를 이용하여 음이온 컬럼(AS14, Dionex, USA)에 서 ion chromatography (DX 500, Dionex, USA)로 분석하였다. NH4⁺-N은 eluent로 10 mN H₂SO₄ + 9% acetonitrile을 이용하 여 양이온 컬럼(CS15, Dionex, USA)에서 ion chromatography (ICS-1500, Dionex, USA)로 분석하였다. 반응기 내의 MLSS 와 MLVSS는 100~110 ℃에서 2시간 동안 건조한 후 550 ℃ 에서 15분 동안 회화하여 측정하였다. N₂O는 HP-FFTP column 과 electron capture detector (ECD)를 이용하여 gas chromatography (Agilent 6890, USA)로 분석하였다. Carrier gas는 N₂를 사용하였고 oven은 50 ℃, injector 100 ℃, detector 250 ℃에서 분석하였다.

3. 결과 및 고찰

3.1. NO2^{-/}NO3⁻의 농도별 회분 탈질실험

Figure 2(a)~(d)는 질소원으로 사용된 NO2⁻-N의 농도(50, 100, 200, 500 mg/L)에 따른 N₂O 발생 특성을 나타낸 것이다. 이때 각 실험에서 acetate는 탈질에 필요한 당량에 맞게 주입 되었다. 그림에서 모든 질소성분은 농도가 아닌 반응기 안의 절대 질량으로 표시되었는데 이는 질소 수지를 통해 N₂O 등 으로 변환된 질소의 비율을 용이하게 추정하고 비교하기 위 함이다. 즉 어느 질소 성분의 질량이 20 mg이면 반응기 농도 는 부피가 400 mL이므로 50 mg/L가 된다.

Figure 2(a)에서 초기 NO₂⁻-N은 5 mg에서 2시간이 지나면 서 4 mg으로 약간 감소하였고 신규 폐수가 유입되면서 약 25 mg으로 다시 증가하였다. 탈질이 진행되면서 NO₂⁻-N은 감소하여 탈질이 시작된지 5시간 후에는 6 mg 정도 잔류하였 다. 이때 acetate는 탈질 당량인 79 mg/L가 주입되었다. Acetate 의 소비는 질소원의 탈질 속도에 비해 다소 빠르게 나타나는 데 이는 acetate가 먼저 세포에 흡수된 뒤에 탈질 반응에 이용 되는 때문이다(data not shown). NO₂⁻-N이 탈질 초기 25 mg 에서 탈질 후 6 mg으로 감소하는 동안 NH₄⁺-N과 NO₃⁻-N은 거의 발생하지 않아 NO₃⁻로의 질산화나 NH₄⁺으로의 환원은 일어나지 않음을 알 수 있다.

N₂O-N은 질소원과 탄소원을 주입해주지 않은 초기 2시간 동안 0.3 mg이 배출되었다. 이는 기존의 SBR의 슬러지가 가 지고 있던 NO₂⁻-N과 세포 내부에 축적되어 있던 전자공여체 를 이용한 일종의 내생 탈질(endogeneous denitrification)로 보 인다. NO₂⁻와 acetate가 공급된 후 총 배출된 N₂O-N은 1.9 mg이 었다. NO₂⁻-N에서 주입 질소 대비 N₂O-N으로의 전환율은 9.3% 이고, 주입된 질소중에서 반응에 참여한 질소 대비 N₂O-N의 수율은 9.8%, 주입된 NO₂⁻-N의 제거효율은 95%였다.

Figure 2(b)는 질소원으로 100 mg/L NO₂⁻-N (40 mg)를 주 입하여 탈질한 실험 결과이다. NO₂⁻-N는 초기에 50.4 mg이고, 최종적으로 10.6 mg으로 감소하였다. 내생 탈질에 의해 초기 2시간 동안 배출된 N₂O-N은 0.9 mg이었으며 외부 탄소원이 도입되면서 일어난 탈질에 의해서는 2.1 mg의 N₂O-N이 배출 되었다. NO₂⁻-N에서 N₂O-N으로의 전환율은 5.2%이고, N₂O-N 의 수율은 5.5%, 주입된 질소의 NO₂⁻-N의 제거율은 96%로 나타났다.

Figure 2(c)는 질소원으로 200 mg/L NO₂⁻-N (80 mg)를 주입 한 것이며 NO₂⁻-N는 탈질 초기에 91.9 mg이었고, 반응 후에 는 41.9 mg으로 감소하였으나 이전 실험과 달리 탈질율은 낮 은 편이었다. NH4⁺-N과 NO₃⁻-N은 거의 변화가 없었다. N₂O-N 은 acetate를 주입하기 이전에는 내생탈질에 의해 약 1.3 mg 정도 배출되었다. 이후 탈질에서 약 2.9 mg의 N₂O-N이 배출 되었다. NO₂⁻-N에서 N₂O-N으로 전환되는 비율은 4.1%이고, N₂O-N의 수율은 6.6%, 주입된 NO₂⁻-N의 제거효율은 63%로 앞의 경우에 비하여 낮게 나타났다.

Figure 2(d)는 500 mg/L NO2⁻-N을 주입하여 실험한 결과이

Figure 2. Nitrogen profiles of the denitrification batch reactor with different concentrations of NO₂⁻-N ((a): 50 mg/L, (b): 100 mg/L,(c): 200 mg/L, (d): 500 mg/L) as the electron acceptor(♦: NH₄⁺-N, ■: NO₂⁻-N, ▲: NO₃⁻-N, ○: N₂O-N, ↓ : NO₂⁻-N injection).

다. NO₂⁻-N은 초기에 234.9 mg이고, 반응 후에는 87.5 mg으로 감소하였다. N₂O-N은 초기에 0 mg에서 반응 후에는 9.5 mg으 로 앞의 두 그래프보다 N₂O 발생량이 높게 나타났다. NO₂⁻-N 에서 N₂O-N으로 전환되는 양은 3.7%이고 N₂O-N의 수율은 5.9%, 주입된 NO₂⁻-N 제거 효율은 63%이다.

Figure 3은 탈질 회분실험에서 질소원으로 사용한 NO₂⁻-N 의 농도별에 따른 누적 N₂O 발생량과 N₂O 전환율(%)과 수율 (%)을 나타낸 것이다. NO₂⁻-N를 농도별로 실험한 결과 누적 N₂O 발생량은 NO₂⁻-N의 농도가 높아지면서 증가하나 N₂O 전환율과 수율은 누적 N₂O 발생량과는 반대로 농도가 높아 지면서 감소하는 경향을 보였다.

탈질 과정에서 NO₂⁻ 농도가 높은 경우 탈질 속도를 낮추 고 NO와 N₂O가 축적될 수 있다는 보고가 있었으며[6], 위의 Figure 2(c)~(d)에서 탈질 효율이 낮게 나타난 것도 NO₂⁻ 농도 가 높았기 때문으로 보인다. NO₂⁻는 HNO₂와 pH에 따라 평형 으로 존재하며 HNO₂가 질산화 및 탈질 과정에 저해를 주는 것으로 알려져 있다[7]. 질산화 과정에서도 인위적으로 NO₂⁻⁻ 를 10 mg/L 주입하자 용존산소에 따라 4~8배 N₂O 배출이 증 가하여 N₂O 배출이 NO₂⁻⁻에 민감하고[8], 실제 하수처리장에 서도 NO₂⁻⁻가 N₂O 배출에 영향을 끼친다는 보고가 있었다[9]. *Alcaligenes faecalis*를 이용한 고농도의 NO₂⁻⁻를 포함한 폐수를

Figure 3. N₂O production profiles with different concentrations of the NO₂⁻-N and acetate as the electron donor(∅: N₂O-N accumulation (mg), ■: N₂O conversion (%), □: N₂O yield(%)).

탈질하는 과정에서 0.09~0.185 kg N₂O-N/유입 kg N의 N₂O가 배출된 보고가 있어 NO₂⁻ 농도가 높아짐에 따라 N₂O 배출이 증가될 수 있음을 보여주었다[10].

Figure 4(a)~(d)는 질소원으로 사용되는 NO₃⁻-N의 농도에 따른 N₂O 발생특성의 차이를 나타낸 것이다. 전자공여체로 는 acetate를 탈질 당량 주입하였다. Figure 4(a)는 50 mg/L

Figure 4. Nitrogen profiles of the denitrification batch reactor with different concentrations of NO₃⁻-N ((a): 50 mg/L, (b): 100 mg/L, (c): 200 mg/L, (d): 500 mg/L) as the electron acceptor(♦: NH₄⁺-N, ■: NO₂⁻-N, ▲: NO₃⁻-N, ○: N₂O-N, ↓: NO₃⁻-N injection).

NO₃⁻-N가 주입되었을 때의 탈질 및 N₂O-N의 배출량을 조사 한 것이다. NO₃⁻-N는 탈질 초기에 20.6 mg이고, 반응 후에는 10.9 mg로 감소하였으나 NH4⁺-N과 NO₃⁻-N은 거의 변화가 없 었다. N₂O-N은 탈질 기간 동안 1.1 mg이 배출되었으며 같은 농도의 NO₂⁻-N을 사용했을 때보다 적은 양이 배출되었다. NO₃⁻-N에서 N₂O-N으로 전환율은 5.3%이고, N₂O-N의 수율 은 11.0%, 주입된 NO₃⁻-N의 제거효율은 45%로 나타났다.

Figure 4(b)는 질소원으로 100 mg/L의 NO₃⁻-N을 사용한 결 과이다. NO₃⁻-N은 탈질 초기에 40.8 mg에서 탈질 반응 후에 는 23.6 mg으로 17.1 mg 감소하였다. NH₄⁺-N과 NO₃⁻-N은 거 의 변화가 없었다. N₂O-N은 탈질 과정에서 2 mg이 배출되었 다. NO₃⁻-N에서 N₂O-N으로 전환율은 5%이고, N₂O-N의 수율 은 11.6%, 주입된 NO₃⁻-N의 제거효율은 43%로 NO₂⁻-N에 비해서는 낮은 제거효율을 보였다.

Figure 4(c)는 질소원으로 200 mg/L NO₃⁻-N를 사용한 결과 로 탈질 초기에 81.9 mg에서 탈질 반응 후에는 32 mg으로 감소하였다. N₂O-N은 초기에 0 mg에서 반응 후에는 3.9 mg 으로 나타난다. NO₃⁻-N에서 N₂O-N으로의 전환율은 4.9%이 고, N₂O-N의 수율은 7.8%, 주입된 NO₃⁻-N의 제거효율은 62% 로 나타났다.

Figure 4(d)는 질소원으로 500 mg/L NO3⁻-N을 탈질한 결과

이다. NO₃⁻-N은 탈질 초기에 200.7 mg에서 탈질 후에는 87.5 mg으로 132.3 mg이 감소하였다. N₂O-N은 탈질 기간 동안 6.5 mg이 배출되었다. NO₃⁻-N에서 N₂O-N으로의 전환율은 3.2%, N₂O-N의 수율은 3.8%이며 NO₃⁻-N 질소제거 효율은 71%로 나타났다.

Figure 5는 탈질 회분실험에서 질소원으로 사용한 NO₃⁻-N 의 농도에 따른 누적 N₂O 배출량과 N₂O의 전환율과 수율을 나타낸 것이다. 질소원인 NO₃⁻-N의 농도가 높아지면서 N₂O 배출량도 같이 증가한다. N₂O-N의 전환율과 수율은 NO₂⁻와 유사하게 NO₃⁻-N 농도가 높아지면서 감소하는 경향을 보여 주었다. 그러나 탈질에 의한 질소 제거율은 NO₃⁻-N 농도가 높아지면서 증가하여 NO₂⁻와는 반대 결과를 보였다. 이것으 로 보아 NO₃⁻와 달리 NO₂⁻는 탈질을 저해하는 것을 확인할 수 있다.

독립영양 미생물인 암모니아 산화균도 암모니아나 수소를 전자공여체로 NO2⁻에서 N2O로 탈질할 수 있는데 이를 질산 화 미생물 탈질이라고 한다[11]. Anammox는 NO2⁻가 암모니 아 산화와 결합되어 일어나는 탈질로서 다른 통상적인 탈질 처럼 NO3⁻를 N2O를 통해 탈질하지는 못하며 따라서 N2O를 배출하지도 않는다[12]. 폐수처리에서 무산소 조건에서 종속 영양 미생물에 의한 탈질이 주요 역할을 하고 호기성 탈질이

Figure 5. N₂O production profiles of the wastewater with different concentrations of the NO₃⁻-N and acetate as the electron donor(ℤ: N₂O-N accumulation (mg), ■: N₂O-N conversion (%), □: N₂O-N yield (%)).

나 질산화 미생물 탈질은 극히 한정적이라고 알려져 있다. 이 것이 실제 N₂O 배출에도 적용되는지는 불명확하지만 호기성 탈질이나 질산화 미생물 탈질에서 전환된 질소에 대비한 N₂O 수율은 종속영양 탈질보다 높다고 알려져 있다[5,13]. 또 한 지금까지 발표된 자료를 통해볼 때 질소원의 농도가 낮은 하수에서 N₂O 배출이 질소원의 농도가 높은 폐수에 비해 매 우 낮게 나타나고 있어 질소원 농도나 폐수의 종류가 N₂O 배출에 영향을 주는 것으로 판단된다[14].

3.2. 탄소/질소(C/N) 비율에 따른 N₂O 배출

탈질에서 폐수의 C/N 비율이 N₂O 배출에 미치는 영향을 조사하였으며 질소원으로는 NO₂⁻, 탄소원으로는 acetate를 이 용하였다. Figure 6은 탈질 회분실험에서의 C/N 비율에 따른 N₂O-N 누적 발생량과 N₂O 전환율과 수율을 나타낸 것이다.

Figure 6. N₂O production profiles of the wastewater in denitrification with different C/N ratios with acetate as the electron donor and NO₂⁻ as the electron acceptor(⊠: N₂O-N accumulation (mg), ■: N₂O-N conversion (%), ⊠: N removal (%)).

질소원으로 50 mg/L NO2⁻-N와 탄소원으로 acetate를 탈질 당 량의 50%를 주입한 결과 N2O-N 배출량은 2.4 mg이었고, NO2⁻-N에서 N2O-N으로 전환율은 12%, NO2⁻-N 제거율은 62%였다. 앞에서 acetate를 탈질 당량의 100%를 주입 결과로 N2O-N 배출량은 1.9 mg이었고 NO2⁻-N에서 N2O-N으로 전환 율은 9.3%, NO2⁻-N 제거율은 95%였다. Acetate를 탈질 당량 의 200% 주입한 결과 N2O-N 배출량은 1.0 mg이었고 NO2⁻-N 에서 N2O-N으로 전환율은 5.2%, 주입된 NO2⁻-N의 제거효율 은 100%였다. C/N 비에 따른 결과를 보면 NO2⁻-N의 탈질효 율은 증가하나 누적 N2O 발생량은 C/N 비율이 높아지면서 N2O 발생량이 감소하고 N2O 전환율 역시 감소하는 경향을 보 였다.

COD/N 비율이 3.5 이하일 때 간헐 포기하는 생물반응기에 서 고농도 폐수를 처리하는 경우 20~30%의 질소가 N₂O로 배 출된 보고도 있었다[15]. *A. faecalis*의 순수배양 연구에서는 탄소원이 결핍될 경우 32~64%의 질소가 N₂O로 배출되었다 [10]. N₂O는 유기탄소원이 결핍되는 순간 축적되기 시작하고 이때 미생물은 내부에 저장된 PHB (polyhydroxybutyrate)를 이용하여 탈질을 한다. 이때 methanol과 같은 외부탄소원이 공급되면 N₂O 배출은 질소 부하의 4.5%에서 0.2%로 낮아진 다[16]. 이것은 N₂로의 완전 탈질에 필요한 유기탄소원이 불 충분하여 N₂O로의 불완전 탈질에 필요한 유기탄소원이 불 충분하여 N₂O로의 불완전 탈질에 진행되었기 때문이다. 따 라서 탈질반응에서의 N₂O 발생저감을 위해서는 충분한 유기 탄소원의 공급이 매우 중요하며 고농도의 질소제거 시스템의 운전시 적정한 C/N비를 유지하는 것이 매우 중요하다. 또한 탈질 단계에서의 일부 미생물은 N₂O를 N₂로 환원하는 능력 을 가지지 못해 N₂O를 배출할 가능성도 크다.

3.3. 실제 하수를 이용한 탈질 회분 및 N₂O 배출실험

Figure 7은 하수처리장의 1차침전지 유출수를 탈질 탄소원 으로 하여 다른 회분실험과 동일한 조건에서 질소원인 NO₂⁻-N (Figure 7(a))와 NO₃⁻-N (Figure 7(b))을 각기 25 mg/L 주입하여 실험한 결과이다. Figure 7(a)에서 NO₂⁻-N은 탈질 초기에는 10 mg이고, 반응 후에는 0 mg으로 완전히 제거되었다. N₂O-N은 초기에 0 mg에서 탈질 종료시에는 0.25 mg으로 합성폐수를 사용했을 때보다 훨씬 적은 양이 발생하였다. NO₂⁻-N에서 N₂O-N으로의 전환율과 수율은 각각 2.5%에 달하였고 주입 된 NO₂⁻-N의 제거율은 97%로 거의 다 제거되었다.

질소원으로 NO₃⁻-N을 사용하여 실험한 결과(Figure 7(b))에 서 NO₃⁻-N은 탈질 초기 9.5 mg에서 탈질 종료 시점에는 0.15 mg으로 감소하였다. N₂O-N은 탈질 후 누적 배출량이 0.017 mg으로 탄소원으로 acetate를 사용했을 때 보다 낮은 것은 물 론이고, NO₂⁻-N와 하수를 사용했을 때의 1/10 이하 수준으로 적게 발생하였다. NO₃⁻-N에서 N₂O-N으로의 전환율과 수율 은 0.4%이고, 주입된 NO₃⁻-N의 제거율은 98.5%로 높게 나타 났다. 이 결과 단일 탄소원인 acetate를 사용했을 때와는 달리 복합 탄소원인 실제 하수를 이용하여 탈질을 하는 경우 N₂O 배출량이 훨씬 낮음을 알 수 있다. 이는 탄소원이 다양해지면 서 탈질 경로가 다양해져 N₂O 발생이 감소할 수 있다는 주장

Figure 7. Denitrification of 25 mg/L NO₂⁻-N(a) and NO₃⁻-N(b) with municipal wastewater from primary clarifier as the electron donor(◆: NH₄⁺-N, ■: NO₂⁻-N, ▲: NO₃⁻-N, ○: N₂O-N, ↓: N injection).

과 일치한다[17,18]. 또한 질소원으로 NO₂⁻를 사용했을 때보 다 NO₃⁻를 사용하였을 때 더 적은 양의 N₂O가 발생하여 앞의 합성 폐수 결과와 일치하였다. 위의 결과를 요약하면 하폐수 의 탈질과정에서 N₂O 배출을 최소화하려면 NO₃⁻나 NO₂⁻ 농 도가 낮게 유지되고 NO₂⁻ 축적이 없는 조건에서 다양한 유 기탄소원이 함유된 하폐수를 이론적 탈질 C/N비 보다 높게 유지하는 것이 중요하다.

4. 결 론

NO₃⁻와 NO₂⁻의 탈질 과정에서 N₂O 배출량에 미치는 인자 들에 대해 검토한 결과 다음과 같은 결론을 얻었다.

 1) 탈질 질소원의 농도가 높을수록 N₂O 배출량도 증가했으 며 NO₂⁻를 이용하는 경우가 NO₃⁻에 비해 N₂O 배출량이 높 아 NO₂⁻가 N₂O 배출에 중요한 영향을 끼친다.

 유기탄소원/질소(C/N) 비율이 탈질 당량에 비해 낮을 경 우 N₂O 배출량이 증가하여 전자공여체가 부족할 경우 탈질 반응이 완결되지 못하고 중간물질인 N₂O로 배출되게 된다.
 실제 하수를 전자공여체로 이용한 경우가 단일 탄소원 인 acetate를 이용한 경우에 비해 N₂O 배출량이 현저히 줄어 들어 복합 탄소원을 주입하여 다양한 탈질 대사(경로)를 이용 하는 것이 N₂O 배출량 저감에 효과적이다.

감 사

"이 논문은 2009년도 한국연구재단의 기초연구사업(과제 번호: 2009-0076711)으로 지원되었다. 또한 2011년도 한림대 학교 교비연구비(HRF-2011-024)에 의하여 연구되었으며 이 에 감사드린다."

참고문헌

- Schulthess, R. V., and Gujer, W., "Release of Nitrous Oxide (N₂O) from Denitrifying Activated Sludge: Verification and Application of a Mathematical Model," *Wat. Res.*, **30**(3), 521-530 (1996).
- Chung, Y. C., and Chung, M. S., "BNP Test to Evaluate the Influence of C/N Ratio on N₂O Production in Biological Denitrification," *Wat. Sci. Tech.*, 42(3-4), 23-27 (2000).
- Hanaki, K., Hong, Z., and Matsuo, T., "Production of Nitrous Oxide Gas During Denitrification of Wastewater," *Wat. Sci. Tech.*, 26(5-6), 1027-1036 (1992).
- 4. Pollice, A., Tandoi, V., and Lestingi, C., "Influence of Aeration and Sludge Retention Time on Ammonium Oxidation to Nitrite and Nitrate," *Wat. Res.*, **36**, 2541-2546 (2002).
- Otte, S., Grobben, N. G., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G., "Nitrous Oxide Production by *Alcaligenes faecalis* under Transient and Dynamic Aerobic and Anaerobic Conditions," *Appl. Environ. Microbiol.*, **62**(7), 2421-2426 (1996).
- Schulthess, R. V., Kuehni, M., and Gujer, W., "Release of Nitric and Nitrous Oxides from Denitrifying Activated Sludge," *Wat. Res.*, 29(1), 215-226 (1995).
- Vadivelu, V. M., Yuan, Z., Fux, C., and Keller, J., "The inhibitory Effects of Free Nitrous Acid on the Energy Generation and Growth Processes of an Enriched *Nitrobacter Culture*," *Environ. Sci. Technol.*, 40(14), 4442-4448 (2006).
- Tallec, G., Garnier, J., Billen, G., and Gousailles, M., "Nitrous Oxide Emissions from Secondary Activated Sludge in Nitrifying Conditions of Urban Wastewater Treatment Plants: Effect of Oxygenation Level," *Wat. Res.*, 40(15), 2972-2980 (2006).
- Sümer, E., Weiske, A., Benckiser, G., and Ottow, J. C. G., "Influence of Environmental Conditions on the Amount of N₂O Released from Activated Sludge in a Domestic Wastewater Treatment Plant," *Experientia*, 51(4), 419-422 (1995).
- Schalk-Otte, S., Seviour, R. J., Kuenen, J. G., and Jetten, M. S. M., "Nitrous oxide (N₂O) Production by *Alcaligenes faecalis* during Feast and Famine Regimes," *Wat. Res.*, 34(7), 2080-2088 (2000).
- 11. Bock, E., Schmidt, I., Stuven, R., and Zart. D., "Nitrogen Loss Caused by Nitrifying *Nitrosomonas* Cells Using Ammonia or

Hydrogen as Electron Donors and Nitrite as Electron Acceptor," Arch. Microbiol., 163, 16-20 (1995).

- Kartal, B., Kuypers, M. M. M., Lavik, G., Schalk, J., Op den Camp, H. J. M., Jetten, M. S. M., and Strous, M., "Anammox Bacteria Disguised as Denitrifiers: Nitrate Reduction to Dinitrogen Gas via Nitrite and Ammonium," *Environ. Microbiol.*, 9(3), 635-642 (2007).
- Colliver, B. B., and Stephenson, T., "Production of Nitrogen Oxide and Dinitrogen Oxide by Autotrophic Nitrifiers," *Biotechnol. Adv.*, 18, 219-232 (2000).
- Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., and van Loosdrecht, M. C. M., "Nitrous Oxide Emission during Wastewater Treatment," *Wat. Res.*, 43, 4093-4103 (2009).
- 15. Itokawa, H., Hanaki, K., and Matsuo, T., "Nitrous Oxide Pro-

duction in High-loading Biological Nitrogen Removal Process under Low COD/N Ratio Condition," *Wat. Res.*, **35**(3), 657-664 (2001).

- Park, K. Y., Inamori, Y., Mizuochi, M., and Ahn, K. H., "Emission and Control of Nitrous Oxide from a Biological Wastewater Treatment System with Intermittent Aeration," *J. Biosci. Bioeng.*, **90**(3), 247-252 (2000).
- Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, M., "Role of Nitrifier Denitrification in the Production of Nitrous Oxide," *Soil Biol. Biochem.*, 33, 1723-1732 (2001).
- Lemaire, R., Meyer, R., Taske A., Crocetti G. R., Keller J., and Yuan Z., "Identifying Causes for N₂O Accumulation in a Lab-scale Sequencing Batch Reactor Performing Simultaneous Nitrification, Denitrification and Phosphorus Removal," *J. Biotechnol.*, **122**(1), 62-72 (2006).