DOI QR코드

DOI QR Code

Effect of Nitrogen Compounds and Organic Carbon Concentrations on $N_2O$ Emission during Denitrification

탈질에서 질소성분 및 유기탄소 농도가 $N_2O$ 배출에 미치는 영향

  • Kim, Dong-Jin (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Heon-Ki (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Yu-Ri (Department of Environmental Sciences and Biotechnology, Hallym University)
  • 김동진 (한림대학교 환경생명공학과) ;
  • 김헌기 (한림대학교 환경생명공학과) ;
  • 김유리 (한림대학교 환경생명공학과)
  • Received : 2011.04.20
  • Accepted : 2011.05.31
  • Published : 2011.06.30

Abstract

The effects of the compounds and concentrations of nitrogenous electron acceptor, the ratio of electron donor/electron acceptor (C/N), and the complexity of electron donor on the emission of $N_2O$ during wastewater denitrification were quantitatively investigated in this study. The higher ${NO_3}^-$ and ${NO_2}^-$ concentrations, the more $N_2O$ emission was observed. ${NO_2}^-$ has strong effect on $N_2O$ emission as it emitted morc $N_2O$ than ${NO_3}^-$, 50 mg/L of ${NO_2}^-$-N gave the highest conversion (9.3%) and yield (9.8%) of $N_2O$ while ${NO_3}^-$-N (50 mg/L) gave 5.6% conversion and 11.0% yield. Lower C/N ratio decreases nitrogen removal efficiency, but it increases the conversion of $N_2O$ because of the incomplete denitrification by the limited organic carbon. When real domestic wastewater is used as the electron donor of the denitrification, $N_2O$ emission is reduced to 1/10 of the emission when single carbon (acetate) is used. It is thought that multiple carbon source utilizes many denitrification pathways and it seems to be helpful for the reduction of $N_2O$ emission.

본 연구에서는 하폐수 탈질 과정에서 전자수용체의 종류와 농도, 전자공여체/전자수용체(C/N)비율, 그리고 전자공여체의 복합도(complexity)가 $N_2O$ 배출에 미치는 영향을 정량적으로 조사하였다. 탈질 질소원의 농도가 높을수록 $N_2O$ 배출량도 증가했으며 ${NO_2}^-$를 이용하는 경우가 ${NO_3}^-$에 비해 $N_2O$ 배출량이 높아 ${NO_2}^-$$N_2O$ 배출에 중요한 영향을 미침을 확인하였다. ${NO_2}^-$-N 50 mg/L에서 $N_2O$-N으로의 전환율 9.3%와 수율 9.8%로 가장 높게 나타났으며 ${NO_3}^-$-N은 50 mg/L에서 전환율이 5.6%, 수율은 11.0%로 나타났다. 유기탄소원/질소(C/N) 비율이 감소하면 질소 제거율은 감소하나 $N_2O$로의 전환율은 증가하였다. 실제 하수를 전자공여체로 이용한 경우가 단일 탄소원인 acetate를 이용한 경우에 비해 $N_2O$ 배출량이 1/10 이하로 현저히 감소하였다. 이는 복합 탄소원이 전자공여체로 이용될 경우 단일 탄소원(acetate)에 비해 다양한 탈질 대사(경로)를 이용하고 이것이 $N_2O$ 배출량 저감에 도움이 되는 것으로 판단된다.

Keywords

References

  1. Schulthess, R. V., and Gujer, W., "Release of Nitrous Oxide ($N_{2}O$) from Denitrifying Activated Sludge: Verification and Application of a Mathematical Model," Wat. Res., 30(3), 521-530 (1996). https://doi.org/10.1016/0043-1354(95)00204-9
  2. Chung, Y. C., and Chung, M. S., "BNP Test to Evaluate the Influence of C/N Ratio on $N_{2}O$ Production in Biological Denitrification," Wat. Sci. Tech., 42(3-4), 23-27 (2000).
  3. Hanaki, K., Hong, Z., and Matsuo, T., "Production of Nitrous Oxide Gas During Denitrification of Wastewater," Wat. Sci. Tech., 26(5-6), 1027-1036 (1992).
  4. Pollice, A., Tandoi, V., and Lestingi, C., "Influence of Aeration and Sludge Retention Time on Ammonium Oxidation to Nitrite and Nitrate," Wat. Res., 36, 2541-2546 (2002). https://doi.org/10.1016/S0043-1354(01)00468-7
  5. Otte, S., Grobben, N. G., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G., "Nitrous Oxide Production by Alcaligenes faecalis under Transient and Dynamic Aerobic and Anaerobic Conditions," Appl. Environ. Microbiol., 62(7), 2421-2426 (1996).
  6. Schulthess, R. V., Kuehni, M., and Gujer, W., "Release of Nitric and Nitrous Oxides from Denitrifying Activated Sludge," Wat. Res., 29(1), 215-226 (1995). https://doi.org/10.1016/0043-1354(94)E0108-I
  7. Vadivelu, V. M., Yuan, Z., Fux, C., and Keller, J., "The inhibitory Effects of Free Nitrous Acid on the Energy Generation and Growth Processes of an Enriched Nitrobacter Culture," Environ. Sci. Technol., 40(14), 4442-4448 (2006). https://doi.org/10.1021/es051694k
  8. Tallec, G., Garnier, J., Billen, G., and Gousailles, M., "Nitrous Oxide Emissions from Secondary Activated Sludge in Nitrifying Conditions of Urban Wastewater Treatment Plants: Effect of Oxygenation Level," Wat. Res., 40(15), 2972-2980 (2006). https://doi.org/10.1016/j.watres.2006.05.037
  9. Sumer, E., Weiske, A., Benckiser, G., and Ottow, J. C. G., "Influence of Environmental Conditions on the Amount of $N_{2}O$ Released from Activated Sludge in a Domestic Waste-water Treatment Plant," Experientia, 51(4), 419-422 (1995). https://doi.org/10.1007/BF01928908
  10. Schalk-Otte, S., Seviour, R. J., Kuenen, J. G., and Jetten, M. S. M., "Nitrous oxide ($N_{2}O$) Production by Alcaligenes faecalis during Feast and Famine Regimes," Wat. Res., 34(7), 2080-2088 (2000). https://doi.org/10.1016/S0043-1354(99)00374-7
  11. Bock, E., Schmidt, I., Stuven, R., and Zart. D., "Nitrogen Loss Caused by Nitrifying Nitrosomonas Cells Using Ammonia or Hydrogen as Electron Donors and Nitrite as Electron Acceptor," Arch. Microbiol., 163, 16-20 (1995). https://doi.org/10.1007/BF00262198
  12. Kartal, B., Kuypers, M. M. M., Lavik, G., Schalk, J., Op den Camp, H. J. M., Jetten, M. S. M., and Strous, M., "Anammox Bacteria Disguised as Denitrifiers: Nitrate Reduction to Dinitrogen Gas via Nitrite and Ammonium," Environ. Microbiol., 9(3), 635-642 (2007). https://doi.org/10.1111/j.1462-2920.2006.01183.x
  13. Colliver, B. B., and Stephenson, T., "Production of Nitrogen Oxide and Dinitrogen Oxide by Autotrophic Nitrifiers," Bio-technol. Adv., 18, 219-232 (2000). https://doi.org/10.1016/S0734-9750(00)00035-5
  14. Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., and van Loosdrecht, M. C. M., "Nitrous Oxide Emission during Wastewater Treatment," Wat. Res., 43, 4093-4103 (2009). https://doi.org/10.1016/j.watres.2009.03.001
  15. Itokawa, H., Hanaki, K., and Matsuo, T., "Nitrous Oxide Production in High-loading Biological Nitrogen Removal Process under Low COD/N Ratio Condition," Wat. Res., 35(3), 657-664 (2001). https://doi.org/10.1016/S0043-1354(00)00309-2
  16. Park, K. Y., Inamori, Y., Mizuochi, M., and Ahn, K. H., "Emission and Control of Nitrous Oxide from a Biological Wastewater Treatment System with Intermittent Aeration," J. Biosci. Bioeng., 90(3), 247-252 (2000). https://doi.org/10.1016/S1389-1723(00)80077-8
  17. Wrage, N., Velthof, G. L., van Beusichem, M. L., and Oenema, M., "Role of Nitrifier Denitrification in the Production of Nitrous Oxide," Soil Biol. Biochem., 33, 1723-1732 (2001). https://doi.org/10.1016/S0038-0717(01)00096-7
  18. Lemaire, R., Meyer, R., Taske A., Crocetti G. R., Keller J., and Yuan Z., "Identifying Causes for $N_{2}O$ Accumulation in a Lab-scale Sequencing Batch Reactor Performing Simultaneous Nitrification, Denitrification and Phosphorus Removal," J. Biotechnol., 122(1), 62-72 (2006). https://doi.org/10.1016/j.jbiotec.2005.08.024