• Title/Summary/Keyword: NLRP3 inflammasome activation

Search Result 50, Processing Time 0.025 seconds

Asiatic Acid Protects Dopaminergic Neurons from Neuroinflammation by Suppressing Mitochondrial ROS Production

  • Chen, Dong;Zhang, Xiao-Ya;Sun, Jing;Cong, Qi-Jie;Chen, Wei-Xiong;Ahsan, Hafiz Muhammad;Gao, Jing;Qian, Jin-Jun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.442-449
    • /
    • 2019
  • This study sought to evaluate the effects of Asiatic acid in LPS-induced BV2 microglia cells and 1-methyl-4-phenyl-pyridine ($MPP^+$)-induced SH-SY5Y cells, to investigate the potential anti-inflammatory mechanisms of Asiatic acid in Parkinson's disease (PD). SH-SY5Y cells were induced using $MPP^+$ to establish as an in vitro model of PD, so that the effects of Asiatic acid on dopaminergic neurons could be examined. The NLRP3 inflammasome was activated in BV2 microglia cells to explore potential mechanisms for the neuroprotective effects of Asiatic acid. We showed that Asiatic acid reduced intracellular production of mitochondrial reactive oxygen species and altered the mitochondrial membrane potential to regulate mitochondrial dysfunction, and suppressed the NLRP3 inflammasome in microglia cells. We additionally found that treatment with Asiatic acid directly improved SH-SY5Y cell viability and mitochondrial dysfunction induced by $MPP^+$. These data demonstrate that Asiatic acid both inhibits the activation of the NLRP3 inflammasome by downregulating mitochondrial reactive oxygen species directly to protect dopaminergic neurons from, and improves mitochondrial dysfunction in SH-SY5Y cells, which were established as a model of Parkinson's disease. Our finding reveals that Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing NLRP3 inflammasome activation in microglia cells as well as protecting dopaminergic neurons directly. This suggests a promising clinical use of Asiatic acid for PD therapy.

Pneumococcal Δpep27 Immunization Attenuates TLRs and NLRP3 Expression and Relieves Murine Ovalbumin-Induced Allergic Rhinitis

  • Yu, Jae Ik;Kim, Ji-Hoon;Nam, Ki-El;Lee, Wonsik;Rhee, Dong-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.709-717
    • /
    • 2022
  • Allergic rhinitis (AR), one of the most common inflammatory diseases, is caused by immunoglobulin E (IgE)-mediated reactions against inhaled allergens. AR involves mucosal inflammation driven by type 2 helper T (Th2) cells. Previously, it was shown that the Streptococcus pneumoniae pep27 mutant (Δpep27) could prevent and treat allergic asthma by reducing Th2 responses. However, the underlying mechanism of Δpep27 immunization in AR remains undetermined. Here, we investigated the role of Δpep27 immunization in the development and progression of AR and elucidated potential mechanisms. In an ovalbumin (OVA)-induced AR mice model, Δpep27 alleviated allergic symptoms (frequency of sneezing and rubbing) and reduced TLR2 and TLR4 expression, Th2 cytokines, and eosinophil infiltration in the nasal mucosa. Mechanistically, Δpep27 reduced the activation of the NLRP3 inflammasome in the nasal mucosa by down-regulating the Toll-like receptor signaling pathway. In conclusion, Δpep27 seems to alleviate TLR signaling and NLRP3 inflammasome activation to subsequently prevent AR.

Effects of Dietary Fructose and Glucose on Hepatic Steatosis and NLRP3 Inflammasome in a Rodent Model of Obesity and Type 2 Diabetes (비만 및 제2형 당뇨병 쥐 모델에서 과당과 포도당의 섭취가 지방간과 NLRP3 염증조절결합체에 미치는 영향)

  • Lee, Hee Jae;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1576-1584
    • /
    • 2013
  • This study is carried out to assess the relative effects of different doses of dietary glucose or fructose on non-alcoholic fatty liver disease (NAFLD) and hepatic metaflammation in a rodent model of type 2 diabetes. KK/HlJ male mice were fed experimental diets as follows: 1) control (CON), 2) moderate glucose (MG, 30% of total calories as glucose), 3) high glucose (HG, 60% of total calories as glucose), 4) moderate fructose (MF, 30% of total calories as fructose), and 5) high fructose (HF, 60% of total calories as fructose) for three weeks. Food intake was not affected by treatments. Compared with HF, HG not only increased serum fasting glucose and area under the curve during oral glucose tolerance test, but also decreased the levels of serum insulin and adiponectin. It indicated that glucose control was complicated via high glucose intake. High fructose treatment led to increased triglyceride in the serum and liver. In comparison to HG, high fructose diet activated NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome consisting of apoptosis-associated speck-like protein containing a CARD (ASC), NLRP3 and caspase 1, which increases interleukin (IL)-$1{\beta}$ maturation and secretion. The activation of NLRP3 inflammasome was accompanied by increased levels of tumor necrosis factor alpha (TNF-${\alpha}$) and IL-6. However, the expression of NLRP3 inflammasome components and pro-inflammatory cytokines did not differ between CON and HG. These data suggested that dietary fructose triggers hepatic metaflammation accompanied by NLRP3 inflammasome activation and has deleterious effects on NAFLD.

Prolonged Exposure to Lipopolysaccharide Induces NLRP3-Independent Maturation and Secretion of Interleukin (IL)-1β in Macrophages

  • Hong, Sujeong;Yu, Je-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.115-121
    • /
    • 2018
  • Upon sensing of microbial infections or endogenous danger signals in macrophages, inflammasome signaling plays a significant role in triggering inflammatory responses via producing interleukin (IL)-$1{\beta}$. Recent studies revealed that active caspase-1, a product of the inflammasome complex, causes maturation of inactive pro-IL-$1{\beta}$ into the active form. However, the underlying mechanism by which this leaderless cytokine is secreted into the extracellular space remains to be elucidated. In this study, we demonstrated that prolonged lipopolysaccharide (LPS) treatment to macrophages could trigger the unexpected maturation and extracellular release of IL-$1{\beta}$ through a nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3)-independent manner. Short-term treatment (less than 6 h) of LPS induced robust production of the IL-$1{\beta}$ precursor form inside cells but did not promote the maturation and secretion of IL-$1{\beta}$ in bone marrow-derived macrophages or peritoneal macrophages. Instead, prolonged LPS treatment (more than 12 h) led to a significant release of matured IL-$1{\beta}$ with no robust indication of caspase-1 activation. Intriguingly, this LPS-triggered secretion of IL-$1{\beta}$ was also observed in NLRP3-deficient macrophages. In addition, this unexpected IL-$1{\beta}$ release was only partially impaired by a caspase-1 and NLRP3 inflammasome inhibitor. Collectively, our results propose that prolonged exposure to LPS is able to drive the maturation and secretion of IL-$1{\beta}$ in an NLRP3 inflammasome-independent manner.

Diosmetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury through Activating the Nrf2 Pathway and Inhibiting the NLRP3 Inflammasome

  • Liu, Qinmei;Ci, Xinxin;Wen, Zhongmei;Peng, Liping
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common clinical syndrome of diffuse lung inflammation with high mortality rates and limited therapeutic methods. Diosmetin, an active component from Chinese herbs, has long been noticed because of its antioxidant and anti-inflammatory activities. The aim of this study was to evaluate the effects of diosmetin on LPS-induced ALI model and unveil the possible mechanisms. Our results revealed that pretreatment with diosmetin effectively alleviated lung histopathological changes, which were further evaluated by lung injury scores. Diosmetin also decreased lung wet/dry ratios, as well as total protein levels, inflammatory cell infiltration and proinflammatory cytokine (eg. $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6) overproduction in bronchoalveolar lavage fluid (BALF). Additionally, increased MPO, MDA and ROS levels induced by LPS were also markly suppressed by diosmetin. Furthermore, diosmetin significantly increased the expression of Nrf2 along with its target gene HO-1 and blocked the activation of NLRP3 inflammasome in the lung tissues, which might be central to the protective effects of diosmetin. Further supporting these results, in vitro experiments also showed that diosmetin activated Nrf2 and HO-1, as well as inhibited the NLRP3 inflammasome in both RAW264.7 and A549 cells. The present study highlights the protective effects of diosmetin on LPS-induced ALI via activation of Nrf2 and inhibition of NLRP3 inflammasome, bringing up the hope of its application as a therapeutic drug towards LPS-induced ALI.

Expression of Inflammasome Complex Following Various Oral Bacterial Infection in THP-1 Cells

  • Na, Hee Sam;Kim, Su Mi;Song, Yu Ri;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.41 no.4
    • /
    • pp.237-242
    • /
    • 2016
  • Interleukin-1b ($IL-1{\beta}$), a proinflammatory cytokine, regulates the innate immune responses against bacterial infection. Mature $IL-1{\beta}$ is produced from $pro-IL-1{\beta}$ by activated caspase-1, which in turn is activated by the inflammasome complex formation. In this study, we compared the inflammasome mRNA expression induced by S. sanguinis, S. oralis, F. nucleatum and P. intermedia. Among the tested bacteria, S. sanguinis induced the highest $IL-1{\beta}$ secretion. S. oralis, F. nucleatum and P. intermedia induced very weak $IL-1{\beta}$ secretion. S. sanguinis mostly induced the NLRP3 mRNA expressions. Although F. nucleatum did not induce high $IL-1{\beta}$ secretion, it induced high expression levels of AIM2, NLRP2, and NLRP3. No specific inflammasomes were induced by S. oralis and P.intermedia. Studying the inflammasome complex activation induced by oral bacteria may thus enhance our understanding of the pathogenesis of oral diseases.

Anti-inflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells

  • Ha, Ji-Sun;Yeom, Yun-Seon;Jang, Ju-Hun;Kim, Yong-Hee;Im, Ji In;Kim, In Sik;Yang, Seung-Ju
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • Metformin is a drug used for the treatment of diabetes and is associated with anti-inflammatory reaction, but the underlying mechanism is unclear. In this study, we investigated the effect of metformin on the inflammatory response in BV-2 microglial cells induced by lipopolysaccharide (LPS) and S100 calcium-binding protein A8 (S100A8). The results revealed that metformin significantly attenuated several inflammatory responses in BV-2 microglial cells, including the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin (IL)-6, involved in the activation of Beclin-1, a crucial regulator of autophagy. In addition, metformin inhibited the LPS-induced phosphorylation of ERK. Metformin also suppressed the activation of NOD-like receptor pyrin domain containing 3 inflammasomes composed of NLRP3, caspase-1, and apoptosis-associated speck like protein containing a caspase recruitment domain, which are involved in the innate immune response. Notably, metformin decreased the secretion of S100A8-induced IL-6 production. These findings suggest that metformin alleviates the neuroinflammatory response via autophagy activation.

Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue

  • Chen, Weijie;Wang, Junlian;Luo, Yong;Wang, Tao;Li, Xiaochun;Li, Aiyun;Li, Jia;Liu, Kang;Liu, Baolin
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • Background: This study was designed to investigate whether ginsenoside Rb1 (Rb1) and compound K (CK) ameliorated insulin resistance by suppressing endoplasmic reticulum (ER) stress-induced inflammation in adipose tissue. Methods: To induce ER stress, epididymal adipose tissue from mice or differentiated 3T3 adipocytes were exposed to high glucose. The effects of Rb1 and CK on reactive oxygen species production, ER stress, TXNIP/NLRP3 inflammasome activation, inflammation, insulin signaling activation, and glucose uptake were detected by western blot, emzyme-linked immunosorbent assay, or fluorometry. Results: Rb1 and CK suppressed ER stress by dephosphorylation of $IRE1{\alpha}$ and PERK, thereby reducing TXNIP-associated NLRP3 inflammasome activation in adipose tissue. As a result, Rb1 and CK inhibited IL-$1{\beta}$ maturation and downstream inflammatory factor IL-6 secretion. Inflammatory molecules induced insulin resistance by upregulating phosphorylation of insulin receptor substrate-1 at serine residues and impairing insulin PI3K/Akt signaling, leading to decreased glucose uptake by adipocytes. Rb1 and CK reversed these changes by inhibiting ER stress-induced inflammation and ameliorating insulin resistance, thereby improving the insulin IRS-1/PI3K/Akt-signaling pathway in adipose tissue. Conclusion: Rb1 and CK inhibited inflammation and improved insulin signaling in adipose tissue by suppressing ER stress-associated NLRP3 inflammation activation. These findings offered novel insight into the mechanism by which Rb1 and CK ameliorate insulin resistance in adipose tissue.

Salmonella Promotes ASC Oligomerization-dependent Caspase-1 Activation

  • Hwang, Inhwa;Park, Sangjun;Hong, Sujeong;Kim, Eun-Hee;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.284-290
    • /
    • 2012
  • Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-$1{\beta}$) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.

Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx

  • Li, Suping;Yu, Nengwei;Xu, Fei;Yu, Liang;Yu, Qian;Fu, Jing
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.700-709
    • /
    • 2022
  • Background: Ginsenoside Rd is a natural compound with promising neuroprotective effects. However, the underlying mechanisms are still not well-understood. In this study, we explored whether ginsenoside Rd exerts protective effects on cerebral endothelial cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and its potential docking proteins related to the underlying regulations. Method: Commercially available primary human brain microvessel endothelial cells (HBMECs) were used for in vitro OGD/R studies. Cell viability, pyroptosis-associated protein expression and tight junction protein degradation were evaluated. Molecular docking proteins were predicted. Subsequent surface plasmon resonance (SPR) technology was utilized for validation. Flow cytometry was performed to quantify caspase-1 positive and PI positive (caspase-1+/PI+) pyroptotic cells. Results: Ginsenoside Rd treatment attenuated OGD/R-induced damage of blood-brain barrier (BBB) integrity in vitro. It suppressed NLRP3 inflammasome activation (increased expression of NLRP3, cleaved caspase-1, IL-1β and GSDMD-N terminal (NT)) and subsequent cellular pyroptosis (caspase-1+/PI + cells). Ginsenoside Rd interacted with SLC5A1 with a high affinity and reduced OGD/R-induced sodium influx and potassium efflux in HBMECs. Inhibiting SLC5A1 using phlorizin suppressed OGD/R-activated NLRP3 inflammasome and pyroptosis in HBMECs. Conclusion: Ginsenoside Rd protects HBMECs from OGD/R-induced injury partially via binding to SLC5A1, reducing OGD/R-induced sodium influx and potassium efflux, thereby alleviating NLRP3 inflammasome activation and pyroptosis.