References
- Hager SR, Jochen AL, Kalkhoff RK. Insulin resistance in normal rats infused with glucose for 72 h. Am J Physiol 1991;260:E353-62.
- Rossetti L. Glucose toxicity: the implications of hyperglycemia in the pathophysiology of diabetes mellitus. Clin Invest Med 1995;18:255-60.
- Haber CA, Lam TK, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 2003;285:E744-53. https://doi.org/10.1152/ajpendo.00355.2002
- Dedoussis GV, Kaliora AC, Panagiotakos DB. Genes, diet and type 2 diabetes mellitus: a review. Rev Diabet Stud 2007;4:13-24. https://doi.org/10.1900/RDS.2007.4.13
- Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008;29:42-61. https://doi.org/10.1210/er.2007-0015
- Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev 2006;86:1133-49. https://doi.org/10.1152/physrev.00015.2006
- Ringseis R, Eder K, Mooren FC, Kruger K. Metabolic signals and innate immune activation in obesity and exercise. Exerc Immunol Rev 2015;21:58-68.
- Schroder K, Tschopp J. The inflammasomes. Cell 2010;140:821-32. https://doi.org/10.1016/j.cell.2010.01.040
-
Oslowski CM, Hara T, O'Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, et al. Thioredoxin-interacting protein mediates ER stress-induced
${\beta}$ cell death through initiation of the inflammasome. Cell Metab 2012;16:265-73. https://doi.org/10.1016/j.cmet.2012.07.005 - Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005;87:99-109. https://doi.org/10.1016/j.biochi.2004.10.019
- Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010;11:136-40. https://doi.org/10.1038/ni.1831
-
Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, Hunter L, Bing C. Interleukin-
$1{\beta}$ mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 2014;307:E289-304. https://doi.org/10.1152/ajpendo.00430.2013 - Maedler K, Dharmadhikari G, Schumann DM, Storling J. Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther 2009;9:1177-88. https://doi.org/10.1517/14712590903136688
- Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 1998;50:1155-60. https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
- Xiong Y, Shen L, Liu KJ, Tso P, Xiong Y, Wang G, Woods SC, Liu M. Antiobesity and antihyperglycemic effects of ginsenoside Rb1 in rats. Diabetes 2010;59:2505-12. https://doi.org/10.2337/db10-0315
- Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198:561-9. https://doi.org/10.1677/JOE-08-0104
- Jiang S, Ren D, Li J, Yuan G, Li H, Xu G, Han X, Du P, An L. Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus. Fitoterapia 2014;95:58-64. https://doi.org/10.1016/j.fitote.2014.02.017
- Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull 2005;28:652-6. https://doi.org/10.1248/bpb.28.652
- Joh EH, Lee IA, Jung IH, Kim DH. Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation-the key step of inflammation. Biochem Pharmacol 2011;82:278-86. https://doi.org/10.1016/j.bcp.2011.05.003
- Kim S, Na JY, Song KB, Choi DS, Kim JH, Kwon YB, Kwon J. Protective effect of ginsenoside Rb1 on hydrogen peroxide-induced oxidative stress in rat articular chondrocytes. J Ginseng Res 2012;36:161-8. https://doi.org/10.5142/jgr.2012.36.2.161
- Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58.
- Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014;21:396-413. https://doi.org/10.1089/ars.2014.5851
- Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008;454:455-62. https://doi.org/10.1038/nature07203
- Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu Rev Pathol 2014;9:119-45. https://doi.org/10.1146/annurev-pathol-012513-104651
- Shao X, Li N, Zhan J, Sun H, An L, Du P. Protective effect of compound K on diabetic rats. Nat Prod Commun 2015;10:243-5.
- Mohamed IN, Hafez SS, Fairaq A, Ergul A, Imig JD, EI-Remessy AB. Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. Diabetologia 2014;57:413-23. https://doi.org/10.1007/s00125-013-3101-z
- Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014;20:1126-67. https://doi.org/10.1089/ars.2012.5149
- Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002;277:1531-7. https://doi.org/10.1074/jbc.M101521200
Cited by
- Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance vol.8, pp.None, 2017, https://doi.org/10.3389/fphar.2017.00043
- Attenuation of TNF-α-Induced Inflammatory Injury in Endothelial Cells by Ginsenoside Rb1 via Inhibiting NF-κB, JNK and p38 Signaling Pathways vol.8, pp.None, 2016, https://doi.org/10.3389/fphar.2017.00464
- Ginsenoside Rg1 Inhibits Glucagon-Induced Hepatic Gluconeogenesis through Akt-FoxO1 Interaction vol.7, pp.16, 2016, https://doi.org/10.7150/thno.18788
- The NLPR3 inflammasome and obesity‐related kidney disease vol.22, pp.1, 2018, https://doi.org/10.1111/jcmm.13333
- Anti-inflammatory effects of a novel compound, MPQP, through the inhibition of IRAK1 signaling pathways in LPS-stimulated RAW 264.7 macrophages vol.51, pp.6, 2016, https://doi.org/10.5483/bmbrep.2018.51.6.064
- Can Topical Use of Ginseng or Ginsenosides Accelerate Wound Healing? vol.21, pp.11, 2016, https://doi.org/10.1089/jmf.2018.29000.com
- Potential Dissociative Glucocorticoid Receptor Activity for Protopanaxadiol and Protopanaxatriol vol.20, pp.1, 2019, https://doi.org/10.3390/ijms20010094
- Accelerated and Severe Lupus Nephritis Benefits From M1, an Active Metabolite of Ginsenoside, by Regulating NLRP3 Inflammasome and T Cell Functions in Mice vol.10, pp.None, 2016, https://doi.org/10.3389/fimmu.2019.01951
- Endoplasmic reticulum stress and NLRP3 inflammasome: Crosstalk in cardiovascular and metabolic disorders vol.234, pp.9, 2016, https://doi.org/10.1002/jcp.28275
-
Ginsenoside Rb1 Ameliorates Age-Related Myocardial Dysfunction by Regulating the NF-
$ \kappa $ B Signaling Pathway vol.48, pp.6, 2020, https://doi.org/10.1142/s0192415x20500676 - Ginsenoside Rb1 Alleviated High-Fat-Diet-Induced Hepatocytic Apoptosis via Peroxisome Proliferator-Activated Receptor γ vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/2315230
- Role of Inflammasomes in Kidney Diseases via Both Canonical and Non-canonical Pathways vol.8, pp.None, 2016, https://doi.org/10.3389/fcell.2020.00106
- Effects of compound K, a metabolite of ginsenosides, on memory and cognitive dysfunction in db/db mice involve the inhibition of ER stress and the NLRP3 inflammasome pathway vol.11, pp.5, 2016, https://doi.org/10.1039/c9fo02602a
- Nutraceutical Compounds Targeting Inflammasomes in Human Diseases vol.21, pp.14, 2020, https://doi.org/10.3390/ijms21144829
- Effects of ginsenoside Rb1 on serum brain natriuretic peptide level and caspase-3 protein expression in cardiomyocytes of rats with chronic heart failure vol.17, pp.74, 2016, https://doi.org/10.4103/pm.pm_561_19
- Red ginseng extracts as an adjunctive therapeutic for gout: preclinical and clinical evidence vol.32, pp.1, 2021, https://doi.org/10.1080/09540105.2020.1854189
- Anti-NLRP3 Inflammasome Natural Compounds: An Update vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020136
- Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook vol.22, pp.5, 2016, https://doi.org/10.3390/ijms22052754
- Plants Secondary Metabolites as Blood Glucose-Lowering Molecules vol.26, pp.14, 2016, https://doi.org/10.3390/molecules26144333
- Ginsenoside CK inhibits obese insulin resistance by activating PPARγ to interfere with macrophage activation vol.157, pp.None, 2016, https://doi.org/10.1016/j.micpath.2021.105002
- Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome vol.35, pp.9, 2016, https://doi.org/10.1002/ptr.7118
- Exploring the Use of Medicinal Plants and Their Bioactive Derivatives as Alveolar NLRP3 Inflammasome Regulators during Mycobacterium tuberculosis Infection vol.22, pp.17, 2016, https://doi.org/10.3390/ijms22179497
- Pyroptosis in diabetic nephropathy vol.523, pp.None, 2016, https://doi.org/10.1016/j.cca.2021.09.003
- Antidiabetic effects of quercetin and liraglutide combination through modulation of TXNIP/IRS‐1/PI3K pathway vol.40, pp.1, 2016, https://doi.org/10.1002/cbf.3678