• Title/Summary/Keyword: NGSST

Search Result 9, Processing Time 0.022 seconds

Study on Merging Method of SSTs Using Multi-satellite Data (다종 위성 자료를 활용한 해수면온도(SST) 합성기법 개발 연구)

  • Oh, Eun-Kyung;Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2011
  • This study introduces a technique to merge three different sea surface temperature(SST) data obtained from multi-satellite sensors. NGSST algorithm, the most popular method of related society, estimates a center pixel of target SST using temporal and spatial correlations, excluding SST accuracies according to sensing methods or properties of satellites. We suggest a merging method of SST to consider the accuracy by satellite or sensor with a comparison with NGSST method. The data used for a merged daily SST with spatial resolution of 5 km was applied from three different satellite sensors such as MODIS, AVHRR and AMSR-E from April 2 to 4, 2011 around the southern coast of Korea. Results of the comparisons showed that the new method is higher than the NGSST method and its STDEV represents a comparatively low value. In future we are planning to compare and analyze the datasets during the daytime as well as nighttime over total cycle of the day.

Impact of High-Resolution Sea Surface Temperatures on the Simulated Wind Resources in the Southeastern Coast of the Korean Peninsula (고해상도 해수면온도자료가 한반도 남동해안 풍력자원 수치모의에 미치는 영향)

  • Lee, Hwa-Woon;Cha, Yeong-Min;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.171-184
    • /
    • 2010
  • Accurate simulation of the meteorological field is very important to assess the wind resources. Some researchers showed that sea surface temperature (SST) plays a leading role on the local meterological simulation. New Generation Sea Surface Temperature (NGSST), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), and Real-Time Global Sea Surface Temperature (RTG SST) have different spatial distribution near the coast and OSTIA shows the best accuracy compared with buoy data in the southeastern coast of the Korean Peninsula. Those SST products are used to initialize the Weather Research and Forecasting (WRF) Model for November 13-23 2008. The simulation of OSTIA shows better result in comparison with NGSST and RTG SST. NGSST shows a large difference with OSTIA in horizontal and vertical wind fields during the weak synoptic condition, but wind power density shows a large difference during strong synoptic condition. RTG SST shows the similar patterns but smaller the magnitude and the extent.

Numerical Study on the Impact of SST Spacial Distribution on Regional Circulation (상세 해수면 온도자료의 반영에 따른 국지 기상정 개선에 관한 수치연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.304-315
    • /
    • 2009
  • Numerical simulations were carried out to understand the effect of Sea Surface Temperature (SST) spatial distribution on regional circulation. A three-dimensional non-hydrostatic atmospheric model RAMS, version 6.0, was applied to examine the impact of SST forcing on regional circulation. New Generation Sea Surface Temperature (NGSST) data were implemented to RAMS to compare the results of modeling with default SST data. Several numerical experiments have been undertaken to evaluate the effect of SST for initialization. First was the case with NGSST data (Case NG), second was the case with RAMS monthly data (Case RM) and third was the case with seasonally averaged RAMS monthly data (Case RS). Case NG showed accurate spatial distributions of SST but, the results of RM and RS were $3{\sim}4^{\circ}C$ lower than buoy observation data. By analyzing practical sea surface conditions, large difference in horizontal temperature and wind field for each run were revealed. Case RM and Case RS showed similar horizontal and vertical distributions of temperature and wind field but, Case NG estimated the intensity of sea breeze weakly and land breeze strongly. These differences were due to the difference of the temperature gradient caused by different spatial distributions of SST. Diurnal variations of temperature and wind speed for Case NG indicated great agreement with the observation data and statistics such as root mean squared error, index of agreement, regression were also better than Case RM and Case RS.

SST 차이에 따른 연안지역 중규모 대기유동장 및 오염패턴변화에 관한 수치모의

  • Jeon, Won-Bae;Lee, Hwa-Un;Lee, Sun-Hwan;Im, Heon-Ho;Choe, Hyeon-Jeong
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.47-49
    • /
    • 2008
  • 기상장 수치모의 결과 Case NGSST와 Case Default의 해수면 온도가 다르게 표현 되어 대상지역의 온도장을 변화 시켰고, 이에 따른 바다와 육지간의 온도경도 변화는 해풍 및 육풍의 침투 깊이를 변화 시켰을 뿐만 아니라 풍속의 변화에도 영향을 미쳤다. 이러한 기상장의 차이는 대기질 모의결과에도 영향을 미쳐 오존농도 분포의 차이로 나타났다.

  • PDF

Marine Environmental Characteristics of Goheung Coastal Waters during Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조 발생시의 한국 남해안 고흥 연안의 해양환경 특징)

  • Lee, Moon Ock;Kim, Byeong Kuk;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.166-178
    • /
    • 2015
  • We investigated marine environmental characteristics of Goheung coastal areas in August where is known to be the first outbreak site of Cochlodinium polykrikoides (hereafter C. polykrikoides) blooms, based on the oceanographic data observed from 1993 to 2013 around the Korean southern coastal waters including Eastern China Sea by National Fisheries Research and Development Institute (NFRDI). The data of NOAA/NGSST satellite images as well as numerical simulation results by Seo et al. [2013] were also used for analysis. Water temperatures at the surface and bottom layers in Goheung coast, i.e. Narodo, were $25.0^{\circ}C$ and $23.7^{\circ}C$ so that they were higher than $23.8^{\circ}C$ and $19.4^{\circ}C$ in Geoje coast where is a reference site, respectively. In addition, salinities at the surface and bottom layers in Goheung coast were 31.78 psu and 31.98 psu so that they were a little higher than 31.54 psu at the surface but a little lower than 32.79 psu at the bottom in Geoje coast, respectively. That is, the differences in water temperature or salinity between the surface and bottom layers in Goheung coast in August were not large compared to Geoje coast. This suggests that stratification in Goheung coast in August is fairly weak or may not be established. In addition, the concentrations of DIN and DIP at the surface layer were 0.068 mg/L ($4.86{\mu}M$) and 0.015 mg/L ($5.14{\mu}M$) in Goheung coast while 0.072 mg/L ($5.14{\mu}M$) and 0.01 mg/L ($0.32{\mu}M$) in Geoje coast, so they did not indicate a meaningful difference. On the other hand, when C. polykrikoides blooms, water temperature and salinity in August at the station 317-22 ($31.5^{\circ}N$, $124^{\circ}E$) of the East China Sea, where is near the mouth of Yangtze River, were $27.8^{\circ}C$ and 31.61 psu, respectively. Thus, water temperature was much higher whereas salinity was almost similar compared to Goheung coast. Furthermore, concentrations of $NO_3-N$ and $PO_4-P$ in the East China Sea in August were remarkably high compared to Goheung coast. When C. polykrikoides blooms, according to not only the image data of satellites NOAA/NGSST but also numerical experiment results by Seo et al.[2013], the freshwater out of Yangtze River was judged to clearly affect the Korean southern coastal waters. Therefore, the supply of nutrients in terms of Yangtze River may greatly contribute to the outbreak of C. polykrikoides blooms in Goheung coast in summer.

Characteristics of Cold Water Appeared in the Southwestern East Sea (동해 남서부해역에 출현하는 냉수 특성)

  • Lee, Moon-Ock;Otake, Shinya;Kim, JongKyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.455-473
    • /
    • 2014
  • 하계 동해의 남서부해역에 냉수가 왜 그리고 어떠한 해양환경하에 출현하는가를 밝히기 위하여 현장조사, 위성자료의 분석 및 수치실험을 실시하였다. 이 해역에서 냉수는 비정상년의 경우는 정상년에 비해 보다 더 연안 가까이에서 출현하였고, 수온도 낮았다. 이것은 냉수가 비정상년에는 정상년에 비해 크게 발달하여 연안역으로 확장함을 의미하였다. 흐름장의 계산결과는 지형류적인 관점에서 수온의 관측결과를 잘 재현하였다. 한편, 정상년의 경우는, 북한한류(NKCW)가 쓰시마난류(TC)와 균형을 유지하면서 동해의 북서쪽에 머물고 있었다. 이에 반해, 비정상년의 경우는, 북한한류가 점차 남쪽으로 남하하여 동해 서부역의 대부분이 북한한류의 세력하에 놓였다. 그래서, 하계 동해 서부 연안역에서의 냉수 출현은 남쪽으로의 북한한류의 확장에 의한 부산물인 것으로 판단되었다. 울산 연안역에 대한 유동계산결과는 하계 남풍이 불 경우, 표층과 저층 사이에 흐름의 역전현상이 나타났다. 따라서, 하계 동해의 남서부 연안역, 특히 수심의 변화가 급한 방어진 부근에서 냉수의 용승이 일어날 수 있음을 시사하였다.

Short-term Variation of Sea Surface Temperature Caused by Typhoon Nabi in the Eastern Sea of Korean Peninsula Derived from Satellite Data (위성영상에서 관측한 태풍 Nabi 통과시의 한반도 동부해역 수온의 단기변동)

  • Kim, Sang-Woo;Yamada, Keiko;Jang, Lee-Hyun;Hong, Chul-Hoon;Go, Woo-Jin;Suh, Young-Sang;Lee, Chu;Lee, Gyu-Hyong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.102-107
    • /
    • 2007
  • A remarkable sea surface cooling (SSC) event was observed in the eastern sea of Korean peninsula based on new generation sea surface temperature (NGSST) satellite images in September 2005, when typhoon Nabi passed over the East Sea. The degree of SSC ranged from $1^{\circ}C\;to\;4^{\circ}C$, and its maximum was observed in the southeastern sea area. Daily variations in sea surface temperature at a longitudinal line $(35^{\circ}-41^{\circ}N,\;132^{\circ}E)$, derived from satellite data for September 1-13, 2005, showed that the SSC lasted about 3 days after the typhoon passed in the south of $39^{\circ}N$, whereas it was unclear in the north of$39^{\circ}N$. Water temperature measured by a mooring buoy suggested that the SSC was caused mainly by a vertical mixing of the water column driven by the typhoon, rather than by coastal upwelling.

Analysis of Abnormal Sea Surface Temperature in the Coastal Waters of the Yellow Sea Using Satellite Data for the Winter Season of 2004 (인공위성자료를 이용한 2004년 겨울철 황해 연안 해역 이상 수온 해석)

  • Moon, Jeong-Eon;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • We studied on the relationship between oceanic variation in the offshore and abnormal sea surface temperature rise in the coastal area of the Yellow Sea using a variety of satellite and in-situ data during winter 2004. In results of the satellite data, the average value of sea surface temperature in the Yellow Sea for 2003 was $10^{\circ}C$, and the average value of sea surface temperature for 2004 was $13^{\circ}C$. It was higher than those of the last year about $3^{\circ}C$. In results of the in-situ data, the average value of surface layer temperature in the Yellow Sea for 2003 was $9.85^{\circ}C$, and the average value of surface layer temperature for 2004 was $12.17^{\circ}C$. In the same satellite data, it was higher than those of the last year about $3^{\circ}C$. In results of the T-S diagram, we divided definitely into water mass of the Yellow Sea and the East China Sea in 2003. But we didn't divide definitely into water mass of the Yellow Sea and the East China Sea in 2004. The average values of air temperature and wind speed for 2003 were $5.23^{\circ}C$ and 4.81 m/s, respectively. And, the average values of air temperature and wind speed for 2004 were $5.61^{\circ}C$ and 4.52 m/s, respectively. So, These were similar. But the wind directions for 2003 were superior northwestern wind, and the wind directions for 2004 were various northern wind. The wind directions were different from each other. Therefore, the abnormal sea surface temperature rise in the coastal area of the Yellow Sea during winter 2004 were better related to oceanic variation in the offshore than influences of atmosphere. In the future, We will do in-depth study for these.