• Title/Summary/Keyword: NG-monomethyl-l-arginine

Search Result 15, Processing Time 0.023 seconds

Changes in the Cellular cGMP Levels and Guanylate Cyclase Activities during Chick Myoblast Fusion (근원세포 융합시 Cellular cGMP 수준과 Guanylate cyclase 활성의 변화)

  • 백미영;강만식
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.433-438
    • /
    • 1993
  • In the previous paper (Choi et al., 1992), we found that a large but transient elevation in intracellular cGMP levels occur concomitant with the myoblast fusion. To establish the physiological significance of the elevation of cGMP levels, the change in guanylate cyclase activity dudng myoblast fusion and the correlation hetween various chemicals that may affect guanylate cyclase adivity and myoblast fusion were examined. Sodium nitroprusside, a nitric oxide-forming compound, induced a precocious fusion and increased guanylate cyclase activity compared to the control. Furthermore, L-NG-monomethyl arginine, specific inhibitor of L-arginine: nitric oxide synthase, inhibited the cell fusion in a dose-dependent manner, without affecting biochemical differentiation. On the basis of our present findings, we propose that the onset of myoblast fusion is somehow correlated with the rise in cellular cGMP levels that is regulated by the activation or inhibItIon of soluble guanylate cyclase, via as yet undefined mechanism but possibly through L-arginine: nitric oxide pathway.

  • PDF

Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets (급성 저산소성 허혈성 뇌손상이 유발된 신생자돈에서 재산소-재관류기 동안 NG-monomethyl-L-arginine과 L-arginine이 뇌의 혈역학 및 에너지 대사에 미치는 영향)

  • Ko, Sun Young;Kang, Saem;Chang, Yun Sil;Park, Eun Ae;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.317-325
    • /
    • 2006
  • Purpose : This study was carried out to elucidate the effects of nitric oxide synthase(NOS) inhibitor, NG-monomethyl-L-arginine(L-NMMA) and nitric oxide precursor, L-arginine(L-Arg) on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion(RR) after hypoxia-ischemia(HI) in newborn piglets. Methods : Twenty-eight newborn piglets were divided into 4 groups; Sham normal control(NC), experimental control(EC), L-NMMA(HI & RR with L-NMMA), and L-Arg(HI & RR with L-Arg) groups. HI was induced by occlusion of bilateral common carotid arteries and simultaneously breathing with 8 percent oxygen for 30 mins, and followed RR by release of carotid occlusion and normoxic ventilation for one hour. All groups were monitored with cerebral hemodynamics and cytochrome $aa_3$ (Cyt $aa_3$) using near infrared spectroscopy(NIRS). $Na^+$, $K^+$-ATPase activity, lipid peroxidation products, and tissue high energy phosphate levels were determined biochemically in the cerebral cortex. Results : In experimental groups, mean arterial blood pressure, $PaO_2$, and pH decreased, and base excess and blood lactate level increased after HI compared to NC group(P<0.05). These variables subsequently returned to baseline after RR except pH. There were no differences among the experimental groups. In NIRS, oxidized hemoglobin($HbO_2$) decreased and hemoglobin(Hb) increased during HI(P<0.05) but returned to base line immediately after RR; 40 min after RR, the $HbO_2$ had decreased significantly compared to NC group(P<0.05). Changes of Cyt $aa_3$ decreased significantly compared to NC after HI and recovered at the end of the experiment. Significantly reduced cerebral cortical cell membrane $Na^+$, $K^+$-ATPase activity and increased lipid peroxidation products(P<0.05) were not improved with L-NMMA or L-Arg. Conclusion : These findings suggest that NO is not involved in the mechanism of HI and RR brain damage during the early acute phase of RR.

Nitric Oxide Synthase Inhibitor Decreases NMDA-Induced Elevations of Extracellular Glutamate and Intracellular $Ca^{2+}$ Levels Via a cGMP-Independent Mechanism in Cerebellar Granule Neurons

  • Oh, Sei-Kwan;Yun, Bong-Sik;Ryoo, In-Ja;Patrick P.McCaslin;Yoo, Ick-Dong
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.48-54
    • /
    • 1999
  • These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and ${[Ca^{2+}]}_i$ elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of ${[Ca^{2+}]}_i$ and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of ${[Ca^{2+}]}_i$ with no change in the basal level of glutamate or ${[Ca^{2+}]}_i$. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

  • PDF

Possible Involvement of $Ca^{2+}$ Activated $K^+$ Channels, SK Channel, in the Quercetin-Induced Vasodilatation

  • Nishida, Seiichiro;Satoh, Hiroyasu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.361-365
    • /
    • 2009
  • Effects of quercetin, a kind of flavonoids, on the vasodilating actions were investigated. Among the mechanisms for quercetin-induced vasodilatation in rat aorta, the involvement with the $Ca^{2+}$ activated $K^+$ ($K_{Ca}$) channel was examined. Pretreatment with NE ($5\;{\mu}M$) or KCl (60 mM) was carried out and then, the modulation by quercetin of the constriction was examined using rat aorta ring strips (3 mm) at $36.5^{\circ}C$. Quercetin (0.1 to $100\;{\mu}M$) relaxed the NE-induced vasoconstrictions in a concentrationdependent manner. NO synthesis (NOS) inhibitor, NG-monomethyl-L-arginine acetate (L-NMMA), at $100\;{\mu}M$ reduced the quercetin ($100\;{\mu}M$)-induced vasodilatation from $97.8{\pm}3.7%$ (n=10) to $78.0{\pm}11.6%$ (n=5, p<0.05). Another NOS inhibitor, L-NG-nitro arginine methyl ester (L-NAME), at $10\;{\mu}M$ also had the similar effect. In the presence of both $100\;{\mu}M$ L-NMMA and $10\;{\mu}M$ indomethacin, the quercetin-induced vasodilatation was further attenuated by $100\;{\mu}M$ tetraethylammonium (TEA, a $K_{Ca}$ channel inhibitor). Also TEA decreased the quercetin-induced vasodilatation in endothelium-denuded rat aorta. Used other $K_{Ca}$ channel inhibitors, the quercetin-induced vasodilatation was attenuated by $0.3\;{\mu}M$ apamin (a SK channel inhibitor), but not by 30 nM charybdotoxin (a BK and IK channel inhibitor). Quercetin caused a concentration-dependent vasodilatation, due to the endotheliumdependent and -independent actions. Also quercetin contributes to the vasodilatation selectively with SK channel on smooth muscle.

Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.227-237
    • /
    • 2021
  • Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

NO/cGMP Pathway is Involved in Exocrine Secretion from Rat Pancreatic Acinar Cells

  • Ahn, Seong-Hoon;Seo, Dong-Wan;Ko, Young-Kwon;Sung, Kae-Suk;Bae, Gyu-Un;Yoon, Jong-Woo;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.657-663
    • /
    • 1998
  • The enzyme responsible for the synthesis of nitric oxide (NO) from L-arginine in mammalian tissues is known as nitric oxide synthase (NOS) (EC.1.14.13.39). In the present study, the role of NO in the regulation of exocrine secretion was investigated in rat pancreatic acinar cells. Treatment of rat pancreatic acinar cells with cholecystokinin-octapeptide (CCK-OP) resulted in an increase in the arginine conversion to citrulline, the amount of $NO_X$, the release of amylase, and the level of CGMP. Especially, CCK-OP-stimulated increase of arginine to citrulline transformation, the amount of $NO_X$, and CGMP level were completely counteracted by the inhibitor of NOS, NG-monomethyl-L-arginine (MMA), by contrast, that of amylase release was partially reduced. Furthermore, MMA-induced decrease of NOS activity and amylase release showed dose-dependent pattern. The data on the time course of CCK-OP-induced citrulline formation and CGMP rise indicate that NOS and guanylate cyclase were activated by treatment of CCK-OP. However, the mechanism of agonist-stimulated guanylate cyclase activation in acinar cells remains unknown. Therefore, activation of NOS is one of the early events in receptor-mediated cascade of reactions in pancreatic acinar cells and NO, not completely, but partially mediate pancreatic enzyme exocrine secretion.

  • PDF

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

The Antihypertensive Effect of Red Ginseng Saponin and the Endothelium-Derived Vascular Relaxation (홍삼 사포닌의 혈압강하작용과 내피의존성 혈관 이완에 미치는 효과)

  • 강수연;김낙두
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.175-182
    • /
    • 1992
  • Intravenous administration of saponin from the root of Panax ginseng (red ginseng) lowered the blood pressure in a dose-dependent manner (10~100 mg/kg B.W) in anesthetized rats. Therefore, experiments were designed to study whether this lowering of blood pressure is associated with the release of endothelium-derived relaxing factor. Rings of thoracic aorta with and without endothelium were suspended for the measurement of isometric tension in organ chamber. All experiments were performed in the presence of indomethacin (10-5 M). Ginseng saponin (10-5~3$\times$10-4 g/ml) relaxed contractions induced by phenylephrine (10-5 M) in the aorta with endothelium but not in that without endothelium. Treatment of aortic rings with NG_monomethyl-L-arginine (L-NMMA 10-4 M for 30 min), a competive inhibitor of nitric oxide synthase and methylene blue (M.B., 3$\times$10-7 M for 30 min), an inhibitor of soluble guanylate cyclase, diminished the relaxation induced by ginseng saponin. In thoracic aortic rings from rats treated with ginseng saponin for 2 weeks intraperitoneally, the relaxation to acetylcholine was increased compared with non-ginseng treated rings. These data suggest that red ginseng saponin evokes hypotension and that vascular relaxations induced by red ginseng saponin are inediatpd by release of endothelium-derived relaxing factor.

  • PDF

The role of nitric oxide as an effector of macrophage-mediated cytotoxicity against Trichomonas vaginalis (질편모충에 대한 대식세포의 세포독성에 있어서 NO의 역할)

  • Park, Geon-Chae;Ryu, Jae-Suk;Min, Deuk-Yeong
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.3
    • /
    • pp.189-196
    • /
    • 1997
  • The purpose of this study is to determine whether nitric oxide is involved in the extracellular killing of Trichomoncs uasinalis by mouse (BALB/c) peritoneal macrophages and RAW264.7 cells activated with LPS or rIFN-γ and also to observe the effects of various chemicals which affect the production of reactive nitrogen intermediates (RNl) in the cytotoxicity against T. vnginnlis. The cytotoxicity was measured by counting the release of (3H)-thymidine from labelled protozoa and NOa was assayed by Griess reaction. Nemonomethyl-L-arginine (L-NMHA), Nenitro-L-arginine methyl ester (NAME) and arginase inhibited cytotoxicity to T. vaginnlis and nitrite production by activated mouse perioneal macrophagrs and RAW 264.7 cells. The addition of excess L-arginine competitively restored trichomonacidal activity of macrophages. Exogenous addition of FeSO4 inhibited cytotoxicity to T. vaginaLis and nitric products of macrophages. From above results, it is assumed that nitric oxide plays an important role in the host defense mechanism of macrophages against T ucfinalis.

  • PDF

Nitric Oxide Production in Brain Microglial Cells by Taraxacum officinale (포공영(蒲公英)에 의한 뇌 소교세포에서 산화질소 (NO)의 생성)

  • Im, Mi-Yang;Moon, Seok-Jae
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • Nitric oxide (NO) is now recognized as a mediator of several biological and immunological functions, but unlike classical neurotransmitters. NO simply diffuse of the postsynaptic cells and around affecting cells. Taraxacum officinale (Compositae) has been used for maintenance of vitality, and they still occupy an important place in the traditional Korean medicine. We have examined that the effect of Taraxacum officinale water extract on NO synthesis in microglial cells of murine's brain, using the Griess method. And this study was evident that Taraxacum officinale did not induce NO production without recombinant interferon gamma ($rIFN-{\gamma}$), whereas Taraxacum officinale (10-1000 g/ml) with $rIFN-{\gamma}$ effectively produced NO in microglial cells of brain. As result. NO production in microglial cells increased most significantly in dose of 100 g/ml of the Taraxacum officinale and the production of NO was dependent on the dose of Taraxacum officinale, NG-monomethyl-L-arginine, competitive inhibitor of NO synthase, reduced the NO production by Taraxacum officinale stimulation with $rIFN-{\gamma}$ in microglial cells of murine. The effect of Taraxacum officinale was mainly dependent on Taraxacum officinale-induced tumor necrosis factor- secretion. Conclusively, this study suggested that Taraxacum officinale stimulate NO production at microglial cells in brain, which may be an important factor for mediating immune and neuroendocrinologic regulation in nervous system.

  • PDF