• Title/Summary/Keyword: NF-B inhibitor

Search Result 302, Processing Time 0.03 seconds

Improvement Effect of Corni Fructus 30% Ethanol Extract by MIA-Induced Osteoarthritis Animal Model (MIA로 골관절염 유발된 동물모델에서 산수유(山茱萸) 30% Ethanol 추출물의 개선 효과)

  • Kim, Min Ju;Lee, Jin A;Shin, Mi-Rae;Park, Hae-Jin;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.35 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Objectives : The objective of this study was to investigate the therapeutic effect of Corni Fructus 30% ethanol extract (CFE) on the monosodium iodoacetate (MIA)-induced osteoarthritis rats. Methods : The subjects were divided into 4 groups ; Normal group (N, n=10), MIA-induced osteoarthritis control group (Con, n=10), indomethacin 5 mg/kg treated group (INDO, n=10), CFE 200 mg/kg treated group (CFE, n=10). Blood and articulation tissues were collected after two weeks of drug administration. Oxidative stress was analyzed with reactive oxygen species (ROS), peroxynitrite (ONOO-). And the Nuclear factor erythroid-2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase, glutathione peroxidase-1/2 (GPx-1/2), Nuclear Factor Kappa B p65 (NF-κBp65), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), Interleukin 1β (IL-1β), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were investigated by western blot. Results : The administration of CFE showed a significant reduction of changes in relative hind paw weight distribution. Reactive oxygen species (ROS) and peroxy nitrite (ONOO-) levels of articulation tissues were significantly decreased in CFE compared to the control group. Western blot measurements of Nrf2, HO-1, SOD, catalase, GPx-1/2 showed that the CFE group was increased compared to the Con group. And western blot measurements of NF-κBp65, COX-2, iNOS, TNFα, IL-6, IL-1β showed that the CFE group was reduced compared to the Con group. Also CFE group decreased MMP-1 and increased TIMP-1. Conclusion : Based on the above results, it can be seen that osteoarthritis is improved when Corni Fructus 30% ethanol extract treated.

Therapeutic Effects of Gaejigayonggolmoryo-tang on Dextran Sodium Sulfate-induced Ulcerative Colitis in Mice (궤양성 대장염 유발 생쥐에 투여한 계지가용골모려탕의 치료효과)

  • Kang, Amy;Lim, Seong-woo
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.6
    • /
    • pp.1021-1034
    • /
    • 2017
  • Objectives: The aim of this study was to investigate the effects of Gaejigayonggolmoryo-tang (GYT) on ulcerative colitis induced by dextran sodium sulfate (DSS) in mice. Methods: Colitis was induced by free drinking of 5% DSS in six-week-old male ICR mice. The experimental groups were the sample group, the control group, and the normal group. The sample group was treated with GYT for three days after being was given 5% DSS for five days. The control group was given water, instead of GYT, for three days after the five days of 5% DSS. The normal group was untreated (not given 5% DSS), for comparison purposes. Results: Cellular experiments showed that GYT inhibits the expression of the inflammatory enzymes COX-2 and iNOS, and the production of NO. Based on the primary cellular experiments, the effects of GYT on ulcerative colitis induced by DSS of mouse tissues were investigated. GYT reduced tissue damage and apoptosis by inhibiting the expression of the inflammatory enzymes $NF-{\kappa}B$ p65, COX-2, and iNOS. In the cellular experiment, GYT was more effective in inhibiting the expression of COX-2 than in inhibiting the expression of iNOS. GYT was evidently effective in tissues in inhibiting the expression of COX-2. Conclusions: Based on the results here, GYT may have therapeutic effects on ulcerative colitis induced by DSS. GYT is worthy of research and development as a COX-2 inhibitor and a potential drug for inflammatory bowel diseases from natural products. Further investigations for exact mechanisms will be needed.

Modulatory Effects of 21 kinds of Medicinal Herbs Including Herba Pogostemi (Agastache rugosa) on Nitric Oxide Production in Macrophage Cell line RAW 264.7 cells (곽향(Agastache rugosa)을 포함한 21종의 한약재가 대식세포주 RAW 264.7 세포의 nitric oxide(NO) 생산 조절에 미치는 효과)

  • Kim, Seung-Hyun;Kang, Mi-Young;Nam, Seok-Hyun
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.411-417
    • /
    • 2005
  • Aqueous extracts were prepared from 21 medicinal herbs including Herba Pogostemi (Agastache rugosa) to examine their modulatory effects on NO production in mouse macrophage cell line RAW264.7 cells. While almost all medicinal herb extracts failed to show marked scavenging activities to NO produced by LPS stimulation, only Herba Pogostemi showed a rather strong induction of NO production in RAW264.7 cells without stimulation with LPS. When we treated the cell with $200{\mu}M\;of\;N^G-monomethyl-L-arginine\;(N^GMMA)$, a NOS2 inhibitor, a significant reduction in NO production could be observed. Moreover, a treatment of $100{\mu}M$ pyrrolidine dithiocarbamate (PDTC) led to about a 79% reduction of NO production. These results demonstrated that the aqueous extract of Herba Pogostemi might provide a second signal for the expression of NOS2 in RAW264.7 cells, and suggested that Herba Pogostemi induces NO production through L-argininedependent pathway.

Anti-oxidative properties of ginseng (인삼의 항산화 작용)

  • Kim, Eun-Hye;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Clinical and animal studies have shown that free radical overload is an important cause for a variety of diseases. Although ginseng has been recognized as antioxidant, how it modulates anti-oxidative process at the molecular level remains unknown. Free radical production is induced by tumor necrosis factor-$\alpha$ (TNF-$\alpha$) under the stress condition, and (TNF-$\alpha$) release is activated by TNF-$\alpha$-converting enzyme (TACE). Since TACE inhibitor is also well known for anti-inflammatory agent, ginseng seems to show anti-oxidative activity by repressing TACE pathway. Further studies on signal transduction would be warranted to elucidate molecular action mechanisms of ginseng on anti-oxidation and anti-inflammation.

Tax is Involved in Up-regulation of HMGB1 Expression Levels by Interaction with C/EBP

  • Zhang, Chen-Guang;Wang, Hui;Niu, Zhi-Guo;Zhang, Jing-Jing;Yin, Ming-Mei;Gao, Zhi-Tao;Hu, Li-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.359-365
    • /
    • 2013
  • The high mobility group box 1 (HMGB1) protein is a multifunctional cytokine-like molecule that plays an important role in the pathogenesis of tumors. In this study, real-time polymerase chain reactions and Western blot assays indicated that HMGB1 transcriptional activity and protein level are increased in $Tax^+$-T cells (TaxP). To clarify the mechanisms, a series of HMGB1 deletion reporter plasmids (pHLuc1 to pHLuc6) were transfected into $Tax^-$-T cells (TaxN, Jurkat) and $Tax^+$-T cells (TaxP). We found that promoter activity in $Tax^+$-T cells to be higher than that in $Tax^-$-T cells, indicating a significant increase in pHLuc6. Bay11-7082 (NF-${\kappa}B$ inhibitor) treatment did not block the enhancing effect. Chromatin immunoprecipitation assays revealed that Tax was retained on a HMGB1 promoter fragment encompassing -1163 to -975. Bioinformatics analysis showed six characteristic cis-elements for CdxA, AP-1, AML-1a, USF, v-Myb, and C/EBP in the fragment in question. Mutation of cis-elements for C/EBP reduced significant HMGB1 promoter activity induced by Tax. These findings indicate that Tax enhances the expression of HMGB1 gene at the transcriptional level, possibly by interacting with C/EBP.

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.

Effect of ganglioside GD3 synthase gene expression on VSMC proliferation via ERK1/2 pathway, cell cycle progression and MMP-9 expression

  • Lee, Young-Choon;Kim, Cheorl-Ho
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.81-90
    • /
    • 2004
  • Sialic acid containing glycosphingolipids (gangliosides) have been implicated in the regulation of various biological phenomena such as atherosclerosis. Recent report suggeststhat exogenously supplied disialoganglioside (GD3) serves a dual role in vascular smooth muscle cells (VSMC) proliferation and apoptosis. However, the role of the GD3 synthase gene in VSMC responses has not yet been elucidated. To determine whether a ganglioside is able to modulate VSMC growth. the effect of overexpression of the GD3 synthase gene on DNA synthesis was examined. The results show that the overexpression of this gene has a potent inhibitory effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of PDGF. The suppression of the GD3 synthase gene was correlated with the down-regulation of cyclinE/CDK2. the up-regulation of the CDK inhibitor p21 and blocking of the p27 inhibition,whereas up-regulation of p53 as the result of GD3 synthase gene expression was not observed. Consistently, blockade of GD3 function with anti-GD3 antibody reversed VSMC proliferation and cell cycle proteins. The expression of the CD3 synthase gene also led to the inhibition of TNF--induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, GD3 synthase gene expression strongly decreased MMP-9 promoteractivlty in response to TNF-. This inhibition was characterized by the down-regulation of MMP-9,which was Iranscriptionally regulated at NF-B and activation protein-1 (AP-1) sites in the MMP-9promoter Finally, the overexpression of MMP-9 in GD3 synthase transfectant cells rescued VSMC proliferation. However MMP-2 overexpression was not affected the cell proliferation. These findings suggest that the fl13 synthase gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.

  • PDF

Upregulation of TNF-α by Triglycerides is Mediated by MEK1 Activation in Jurkat T Cells

  • Lim, Jaewon;Yang, Eun Ju;Chang, Jeong Hyun
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • Triglyceride (TG) is known to be associated with inflammatory disease including atherosclerosis. In a variety of atherosclerosis models, T lymphocytes are localized in the earliest lesions of atherosclerosis. T cell associated cytokines such as $TNF-{\alpha}$ and $IFN-{\gamma}$ have pre-dominant inflammatory effects in chronic vascular diseases. In our previous study, we found that the expression of $TNF-{\alpha}$ and its receptor, $TNF-{\alpha}R$ was increased when Jurkat T lymphocyte cell lines were exposed to TGs. Therefore, experiments were conducted to determine which cell signaling pathway are involved in the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs. To identify signal transduction pathways involved in TG-induced upregulation of $TNF-{\alpha}$, we treated TG-exposed Jurkat T cells with specific inhibitors for MEK1, PI3K, $NF-{\kappa}B$ and PKC. We found that inhibition of the MEK1 pathway blocked TG-induced upregulation of $TNF-{\alpha}$. However, the expression level of $TNF-{\alpha}R$ did not change with any signal transduction inhibitor. Based on this observation, we suggest that increase of exogenous TG induces increase of $TNF-{\alpha}$ expression through MEK1 pathway in Jurkat T cells. In addition, it was confirmed that the increase of $TNF-{\alpha}$ and $TNF-{\alpha}R$ expression by TGs occurs via different pathways.

Transduced Tat-CIAPIN1 reduces the inflammatory response on LPS- and TPA-induced damages

  • Yeo, Hyeon Ji;Shin, Min Jea;You, Ji Ho;Kim, Jeong Su;Kim, Min Young;Kim, Dae Won;Kim, Duk-Soo;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.695-699
    • /
    • 2019
  • Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), known as an anti-apoptotic and signal-transduction protein, plays a pivotal role in a variety of biological processes. However, the role of CIAPIN1 in inflammation is unclear. We investigated the protective effects of CIAPIN1 in lipopolysaccharide (LPS)-exposed Raw 264.7 cells and against inflammatory damage induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in a mouse model using cell-permeable Tat-CIAPIN1. Transduced Tat-CIAPIN1 significantly reduced ROS production and DNA fragmentation in LPS-exposed Raw 264.7 cells. Also, Tat-CIAPIN1 inhibited MAPKs and NF-κB activation, reduced the expression of Bax, and cleaved caspase-3, COX-2, iNOS, IL-6, and TNF-α in LPS-exposed cells. In a TPA-induced animal model, transduced Tat-CIAPIN1 drastically decreased inflammation damage and inhibited COX-2, iNOS, IL-6, and TNF-α expression. Therefore, these findings suggest that Tat-CIAPIN1 might lead to a new strategy for the treatment of inflammatory skin disorders.

Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells

  • Wei Xia;Zongdong Zhu;Song Xiang;Yi Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.784-794
    • /
    • 2023
  • Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods: Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results: Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.