DOI QR코드

DOI QR Code

Ginsenoside Rg5 promotes wound healing in diabetes by reducing the negative regulation of SLC7A11 on the efferocytosis of dendritic cells

  • Wei Xia (Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China) ;
  • Zongdong Zhu (Department of Orthopedics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China) ;
  • Song Xiang (Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China) ;
  • Yi Yang (Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China)
  • Received : 2023.04.06
  • Accepted : 2023.06.19
  • Published : 2023.11.01

Abstract

Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods: Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results: Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 μM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.

Keywords

Acknowledgement

All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgements and have given us their written permission to be named. If we have not included an Acknowledgements, then that indicates that we have not received substantial contributions from non-authors.

References

  1. Tapiwa Chamanga E. Clinical management of non-healing wounds. Nurs Stand 2018;32(29):48-63. https://doi.org/10.7748/ns.2018.e10829
  2. Boada-Romero E, Martinez J, Heckmann BL, Green DR. The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol 2020;21(7):398-414. https://doi.org/10.1038/s41580-020-0232-1
  3. Mehrotra P, Ravichandran KS. Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov 2022;21(8):601-20. https://doi.org/10.1038/s41573-022-00470-y
  4. Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK, Roy S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 2010;5(3):e9539.
  5. Morioka S, Maueroder C, Ravichandran KS. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 2019;50(5):1149-62. https://doi.org/10.1016/j.immuni.2019.04.018
  6. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 2014;14(6):417-28. https://doi.org/10.1038/nri3683
  7. Elizondo DM, Andargie TE, Haddock NL, Boddie TA, Lipscomb MW. Drebrin 1 in dendritic cells regulates phagocytosis and cell surface receptor expression through recycling for efficient antigen presentation. Immunology 2019;156(2):136-46. https://doi.org/10.1111/imm.13010
  8. Maschalidi S, Mehrotra P, Keceli BN, De Cleene HKL, Lecomte K, Van der Cruyssen R, Janssen P, Pinney J, van Loo G, Elewaut D, et al. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 2022;606(7915):776-84. https://doi.org/10.1038/s41586-022-04754-6
  9. Shook B, Xiao E, Kumamoto Y, Iwasaki A, Horsley V. CD301b+ macrophages are essential for effective skin wound healing. J Invest Dermatol 2016;136(9):1885-91. https://doi.org/10.1016/j.jid.2016.05.107
  10. Phillipson M, Kubes P. The healing power of neutrophils. Trends Immunol 2019;40(7):635-47. https://doi.org/10.1016/j.it.2019.05.001
  11. Huang L, Cai HA, Zhang MS, Liao RY, Huang X, Hu FD. Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis. J Pharmacol Sci 2021;147(3):271-83. https://doi.org/10.1016/j.jphs.2021.07.008
  12. Jin L, Liu J, Wang S, Zhao L, Li J. Evaluation of 20(S)-ginsenoside Rg3 loaded hydrogel for the treatment of perianal ulcer in a rat model. J Ginseng Res 2022;46(6):771-9. https://doi.org/10.1016/j.jgr.2022.03.002
  13. Lee H, Kong G, Park J, Park J. The potential inhibitory effect of ginsenoside Rh2 on mitophagy in UV-irradiated human dermal fibroblasts. J Ginseng Res 2022;46(5):646-56. https://doi.org/10.1016/j.jgr.2022.02.001
  14. Wei Y, Yang H, Zhu C, Deng J, Fan D. Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice. J Agric Food Chem 2020;68(18):5107-17. https://doi.org/10.1021/acs.jafc.0c00605
  15. Zhu Y, Yang H, Deng J, Fan D. Ginsenoside Rg5 improves insulin resistance and mitochondrial biogenesis of liver via regulation of the sirt1/PGC-1alpha signaling pathway in db/db mice. J Agric Food Chem 2021;69(30):8428-39. https://doi.org/10.1021/acs.jafc.1c02476
  16. Zhu Y, Zhu C, Yang H, Deng J, Fan D. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res 2020;155:104746.
  17. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Zhang J, Jimenez Perez ZE, Kim YJ, Yang DC. Ginsenoside Rg5:Rk1 attenuates TNF-alpha/IFN-gamma-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-kappaB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. In Vitro. Cell Dev Biol Anim 2016;52(3):287-95. https://doi.org/10.1007/s11626-015-9983-y
  18. Wang YF, Feng JY, Zhao LN, Zhao M, Wei XF, Geng Y, et al. Aspirin triggers ferroptosis in hepatocellular carcinoma cells through restricting NF-kappaB p65-activated SLC7A11 transcription. Acta Pharmacol Sin 2023. Online ahead of print.
  19. Naik P, Sajja RK, Prasad S, Cucullo L. Effect of full flavor and denicotinized cigarettes exposure on the brain microvascular endothelium: a microarray-based gene expression study using a human immortalized BBB endothelial cell line. BMC Neurosci 2015;16:38. https://doi.org/10.1186/s12868-015-0173-3
  20. Lee HS, Kim MR, Park Y, Park HJ, Chang UJ, Kim SY, Suh HJ. Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: in vitro and animal study. J Med Food 2012;15(11):1015-23. https://doi.org/10.1089/jmf.2012.2187
  21. Van Hove L, Lecomte K, Roels J, Vandamme N, Vikkula HK, Hoorens I, Ongenae K, Hochepied T, Donati G, Saeys Y, et al. Fibrotic enzymes modulate wound-induced skin tumorigenesis. EMBO Rep 2021;22(5):e51573.
  22. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, Schuler G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 1999;223(1):77-92. https://doi.org/10.1016/S0022-1759(98)00204-X
  23. Bailey JD, Shaw A, McNeill E, Nicol T, Diotallevi M, Chuaiphichai S, Patel J, Hale A, Channon KM, Crabtree MJ. Isolation and culture of murine bone marrow-derived macrophages for nitric oxide and redox biology. Nitric Oxide 2020;100:17-29. https://doi.org/10.1016/j.niox.2020.04.005
  24. Alam O. A single-cell-type transcriptomics map of human tissues. Nat Genet 2021;53(9):1275.
  25. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347(6220):1260419.
  26. Huang QQ, Perlman H, Birkett R, Doyle R, Fang D, Haines GK, Robinson W, Datta S, Huang Z, Li QZ, et al. CD11c-mediated deletion of Flip promotes autoreactivity and inflammatory arthritis. Nat Commun 2015;6:7086.
  27. Gu Y, Albuquerque CP, Braas D, Zhang W, Villa GR, Bi J, Ikegami S, Masui K, Gini B, Yang H, et al. mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT. Mol Cell 2017;67(1):128-38. e7. https://doi.org/10.1016/j.molcel.2017.05.030
  28. Schappe MS, Stremska ME, Busey GW, Downs TK, Seegren PV, Mendu SK, Flegal Z, Doyle CA, Stipes EJ, Desai BN. Efferocytosis requires periphagosomal Ca(2+)-signaling and TRPM7-mediated electrical activity. Nat Commun 2022;13(1):3230.
  29. Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y, Zhao L, Serbulea V, Onengut-Gumuscu S, Leitinger N, Kucenas S, et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 2018;563(7733):714-8. https://doi.org/10.1038/s41586-018-0735-5
  30. Evans AL, Blackburn JW, Yin C, Heit B. Quantitative efferocytosis assays. Methods Mol Biol 2017;1519:25-41. https://doi.org/10.1007/978-1-4939-6581-6_3
  31. Gerlach BD, Ampomah PB, Yurdagul Jr A, Liu C, Lauring MC, Wang X, et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab 2021;33(12):2445-24463 e8.
  32. Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol Sin 2020;41(1):138-44. https://doi.org/10.1038/s41401-019-0228-6
  33. Zhou C, Zhang C, Zhu H, Liu Z, Su H, Zhang X, Chen T, Zhong Y, Hu H, Xiong M, et al. Allosteric regulation of Hsp90alpha's activity by small molecules targeting the middle domain of the chaperone. iScience 2020;23(2):100857.
  34. Xia J, Ma S, Zhu X, Chen C, Zhang R, Cao Z, Chen X, Zhang L, Zhu Y, Zhang S, et al. Versatile ginsenoside Rg3 liposomes inhibit tumor metastasis by capturing circulating tumor cells and destroying metastatic niches. Sci Adv 2022;8(6):eabj1262.
  35. Poon IK, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 2014;14(3):166-80. https://doi.org/10.1038/nri3607
  36. Liu J, Zhang X, Cheng Y, Cao X. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol 2021;18(11):2461-71. https://doi.org/10.1038/s41423-021-00726-4
  37. Wang YZ, Xu Q, Wu W, Liu Y, Jiang Y, Cai QQ, Lv QZ, Li XY. Brain transport profiles of ginsenoside Rb(1) by glucose transporter 1: in vitro and in vivo. Front Pharmacol 2018;9:398.
  38. Gao S, Kushida H, Makino T. Ginsenosides, ingredients of the root of Panax ginseng, are not substrates but inhibitors of sodium-glucose transporter 1. J Nat Med 2017;71(1):131-8. https://doi.org/10.1007/s11418-016-1042-9
  39. Li S, Yu N, Xu F, Yu L, Yu Q, Fu J. Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx. J Ginseng Res 2022;46(5):700-9. https://doi.org/10.1016/j.jgr.2022.05.006
  40. Yan R, Xie E, Li Y, Li J, Zhang Y, Chi X, Hu X, Xu L, Hou T, Stockwell BR, et al. The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res 2022;32(7):687-90. https://doi.org/10.1038/s41422-022-00642-w
  41. Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol 2022;19(1):3-13. https://doi.org/10.1038/s41423-021-00741-5
  42. Chen P, Denniston AK, Hirani S, Hannes S, Nussenblatt RB. Role of dendritic cell subsets in immunity and their contribution to noninfectious uveitis. Surv Ophthalmol 2015;60(3):242-9. https://doi.org/10.1016/j.survophthal.2015.01.003
  43. Crunkhorn S. Promoting efferocytosis heals diabetic wounds. Nat Rev Drug Discov 2022;21(7):491.
  44. Aitcheson SM, Frentiu FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules 2021;26(16).
  45. Bosurgi L, Cao YG, Cabeza-Cabrerizo M, Tucci A, Hughes LD, Kong Y, Weinstein JS, Licona-Limon P, Schmid ET, Pelorosso F, et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 2017;356(6342):1072-6. https://doi.org/10.1126/science.aai8132
  46. Qiang Z, Dong H, Xia Y, Chai D, Hu R, Jiang H. Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11. Oxid Med Cell Longev 2020;2020:5146982.
  47. Feng L, Zhao K, Sun L, Yin X, Zhang J, Liu C, Li B. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med 2021;19(1):367.
  48. Feng SL, Luo HB, Cai L, Zhang J, Wang D, Chen YJ, Zhan HX, Jiang ZH, Xie Y. Ginsenoside Rg5 overcomes chemotherapeutic multidrug resistance mediated by ABCB1 transporter: in vitro and in vivo study. J Ginseng Res 2020;44(2):247-57. https://doi.org/10.1016/j.jgr.2018.10.007
  49. Yesmin Simu S, Ahn S, Castro-Aceituno V, Yang DC. Ginsenoside Rg5: rk1 exerts an anti-obesity effect on 3T3-L1 cell line by the downregulation of PPARgamma and CEBPalpha. Iran J Biotechnol 2017;15(4):252-9. https://doi.org/10.15171/ijb.1517
  50. Atomura R, Sanui T, Fukuda T, Tanaka U, Toyoda K, Taketomi T, Yamamichi K, Akiyama H, Nishimura F. Inhibition of Sprouty2 polarizes macrophages toward an M2 phenotype by stimulation with interferon gamma and Porphyromonas gingivalis lipopolysaccharide. Immun Inflamm Dis 2016;4(1):98-110.  https://doi.org/10.1002/iid3.99