• 제목/요약/키워드: NF-${\kappa}B$/MAPK

검색결과 290건 처리시간 0.022초

TPA로 유도된 마우스 귀 부종 동물모델에서 소목추출물의 항염증 효과 (Anti-Inflammatory Effects of Extracts from Caesalpinia sappan L. on Skin Inflammation)

  • 음원식;이광재;김대원;임순성;강일준;박진서;최수영
    • 한국식품영양과학회지
    • /
    • 제42권3호
    • /
    • pp.384-388
    • /
    • 2013
  • 본 연구를 통하여 TPA로 유도한 마우스 귀 부종 염증반응에 대한 소목추출물의 항염증 효능과 기전을 확인하였다. 소목추출물은 TPA로 유도한 마우스 귀 부종을 억제하였으며, TPA에 의한 염증관련 단백질인 COX-2 발현 및 cytokine(IL-6, TNF-${\alpha}$ 그리고 IL-$1{\beta}$)의 mRNA 발현을 현저히 감소시켰다. 또한 TPA에 의한 NF-${\kappa}B$ 및 MAPK의 활성을 억제하였다. 본 연구 결과, 소목추출물은 NF-${\kappa}B$ 및 MAPK의 신호전달을 억제함으로서 항염증 효능을 나타내었다.

Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways

  • Li, Xin;Jin, Fengri;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.303-310
    • /
    • 2021
  • In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.

The Stem Bark of Kalopanax pictus Exhibits Anti-inflammatory Effect through Heme Oxygenase-1 Induction and NF-${\kappa}B$ Suppression

  • Bang, Soo-Young;Park, Ga-Young;Park, Sun-Young;Kim, Ji-Hee;Lee, Yun-Kyoung;Lee, Sang-Joon;Kim, Young-Hee
    • IMMUNE NETWORK
    • /
    • 제10권6호
    • /
    • pp.212-218
    • /
    • 2010
  • Backgroud: The stem bark of Kalopanax pictus (KP) has been used in traditional medicine to treat rheumatoidal arthritis, neurotic pain and diabetes mellitus in China and Korea. In this study, the mechanism responsible for anti-inflammatory effects of KP was investigated. Methods: We examined the effects of KP on NO production, nitric oxide synthase (iNOS) and HO-1 expression, NF-${\kappa}B$, Nrf2 and MAPK activation in mouse peritoneal macrophages. Results: The aqueous extract of KP inhibited LPS-induced NO secretion as well as inducible iNOS expression, without affecting cell viability. KP suppressed LPS-induced NF-${\kappa}B$ activation, phosphorylation and degradation of $I{\kappa}B-{\alpha}$, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Furthermore, KP induced HO-1 expression and Nrf2 nuclear translocation. Conclusion: These results suggest that KP has the inhibitory effects on LPS-induced NO production in macrophages through NF-${\kappa}B$ suppression and HO-1 induction.

Tolfenamic Acid Suppresses Inflammatory Stimuli-Mediated Activation of NF-κB Signaling

  • Shao, Hong Jun;Lou, Zhiyuan;Jeong, Jin Boo;Kim, Kui Jin;Lee, Jihye;Lee, Seong-Ho
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.39-44
    • /
    • 2015
  • Tolfenamic acid (TA) is a traditional non-steroid anti-inflammatory drug (NSAID) and has been broadly used for the treatment of migraines. Nuclear factor kappa B (NF-${\kappa}B$) is a sequence-specific transcription factor and plays a key role in the development and progression of inflammation and cancer. We performed the current study to investigate the underlying mechanisms by which TA suppresses inflammation focusing on NF-${\kappa}B$ pathway in TNF-${\alpha}$ stimulated human normal and cancer cell lines and lipopolysaccharide (LPS)-stimulated mouse macrophages. Different types of human cells (HCT116, HT-29 and HEK293) and mouse macrophages (RAW264.7) were pre-treated with different concentrations of TA and then exposed to inflammatory stimuli such as TNF-${\alpha}$ and LPS. Transcriptional activity of NF-${\kappa}B$, $l{\kappa}B-{\alpha}$-degradation, p65 translocation and mitogen-activated protein kinase (MAPK) activations were measured using luciferase assay and Western blots. Pre-treatment of TA repressed TNF-${\alpha}$- or LPS-stimulated NF-${\kappa}B$ transactivation in a dose-dependent manner. TA treatment reduced degradation of $l{\kappa}B-{\alpha}$ and subsequent translocation of p65 into nucleus. TA significantly down-regulated the phosphorylation of c-Jun N-terminal kinase (JNK). However, TA had no effect on NF-${\kappa}B$ signaling and JNK phosphorylation in HT-29 human colorectal cancer cells. TA possesses anti-inflammatory activities through suppression of JNK/NF-${\kappa}B$ pathway in different types of cells.

The cancer/testis antigen CAGE induces MMP-2 through the activation of NF-κB and AP-1

  • Kim, Young-Mi;Jeoung, Doo-Il
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.758-763
    • /
    • 2009
  • Cancer-associated antigen (CAGE) induces the expression of matrix metalloproteinase-2 (MMP-2) by activating Akt, which in turn interacts with inhibitory kappa kinase $\beta$ ($I{\kappa}K{\beta}$) to activate nuclear factor ${\kappa}B$ (NF-${\kappa}B$). Akt and p38 mitogen activated protein kinase (p38 MAPK) are necessary for CAGE-mediated induction of the AP-1 subunit JunB, whereas extracellular regulated kinase (ERK) is necessary for the induction of fos-related antigen-1 (Fra-1). Induction of MMP-2 by CAGE requires activator of protein-1 (AP-1) to be bound. Specific binding of JunB to MMP-2 promoter sequences was shown by chromatin immunoprecipitation (ChIP) analysis.

Estragole Exhibits Anti-inflammatory Activity with the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-induced RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • 제24권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Estragole is a naturally occurring phenylpropanoid obtained from essential oils found in a broad diversity of plants. Although the phenylpropanoids show many biological activities, clear regulation of the inflammatory signaling pathways has not yet been determined. Here, we scrutinized the anti-inflammatory effect of estragole. The anti-inflammatory effect of estragole was determined through the inhibitory mechanisms of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), and mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Estragole significantly inhibited NO production, iNOS and COX-2 expression as well as LPS-induced $NF-{\kappa}B$ and MAPK activation. Furthermore, estragole suppressed LPS-induced intracellular ROS production but up-regulated the stress response gene HO-1 via the activation of transcription factor Nrf-2. These findings demonstrate that estragole inhibits the LPS-induced expression of inflammatory mediators via the down-regulation of iNOS, COX-2, $NF-{\kappa}B$, and MAPK pathways, as well as the up-regulation of the Nrf-2/HO-1 pathway, indicating that this phenylpropanoid has potential therapeutic and preventive applications in various inflammatory diseases.

Anti-inflammatory Effects of Abeliophyllum distichum Flower Extract and Associated MAPKs and NF-κB Pathway in Raw264.7 Cells

  • Lee, Jin-Wook;Kang, Yoon-Joong
    • 한국자원식물학회지
    • /
    • 제31권3호
    • /
    • pp.202-210
    • /
    • 2018
  • Abeliophyllum distichum is a medicinal plant used in regional traditional medicine to relieve pain in inflammatory processes. In this study, anti-inflammatory effects of Abeliophyllum distichum flower (ADF) extract were examined. Furthermore, possible molecular mechanisms of the anti-inflammatory effects were dissected. The anti-inflammatory activity was investigated by inhibition of lipopolysaccharide (LPS) induced pro-inflammatory cytokine production in murine macrophage-like cell line Raw264.7 cells. The measurement of the induced pro-inflammatory cytokine levels were carried out by ELISA. The phosphorylation of ERK1/2, JNK, and MAPK, and the nuclear expression of nuclear factor NF-${\kappa}B$ p65 were investigated by Western blot analysis. The extract of ADF significantly decreased the production of pro-inflammatory cytokines. In addition, the extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of NF-${\kappa}B$ p65 in activated cells. Our findings provide evidence for the popular use of Abeliophylli distichum in inflammation around Goesan region and also suggest that the flower extract has potential therapeutic benefits against various inflammatory diseases.

Nypa fruticans Wurmb Exerts Anti-Inflammatory Effects through NF-kB and MAPK Signaling Pathway

  • Hye-Jeong Park;So-Yeon Han;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.56-56
    • /
    • 2021
  • Nypa fruticans Wurmb is a mangrove plant belonging to Araceae family. N. fruticans is typically found in Southeast Asia, and in some parts of Queensland, Australia. N. fruticans has phytochemicals, phenolics, and flavonoids. In this study, we investigated the anti-inflammatory effects of the ethyl acetate fraction of N. fruticans (ENF) on the production and expression of cytokines and inflammatory mediators through the major signal transduction pathways. ENF attenuated the level of cytokines in a dose-dependent manner and decreased the production of nitric oxide (NO). ENF decreased the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via alleviating transcription of nuclear factor-kappa B (NF-κB) by an inhibitor of nuclear factor-kappa B (IκB) degradation. Furthermore, mitogen-activated protein kinase (MAPK) signaling pathways (ERK1/2, JNK1/2, and p38) are known to be involved in the inflammatory response. Phosphorylations of ERK1/2, JNK1/2, and p38 were significantly decreased compared with the ENF-untreated control. Conclusively, ENF was related to alleviating various pro-inflammatory mediators through IκB/NF-κB and MAPK signaling pathways, including p65 translocation to the nucleus.

  • PDF

NF-κB와 MAPKs 활성 저해를 통한 미야베 모자반(Sargassum miyabei Yendo) 에탄올 추출물의 항염증 활성 (Anti-Inflammatory Activity of Ethanol Extract of Sargassum miyabei Yendo via Inhibition of NF-κB and MAPK Activation)

  • 김민지;배난영;김꽃봉우리;박선희;장미란;임무혁;안동현
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.442-451
    • /
    • 2016
  • 본 연구에서는 미야베 에탄올 추출물의 항염증 활성을 확인하기 위해 LPS로 활성화된 RAW 264.7 세포와 croton-oil로 유도된 귀부종 동물 모델을 이용하였다. 그 결과, SMYEE 50 및 $100{\mu}g/ml$ 농도처리 시, LPS로 유도된 염증반응에서 $NF-{\kappa}B$ 활성 억제와 더불어 MAPKs의 인산화를 효과적으로 억제함을 보였다. LPS에 의해 증가된 NO와 전염증성 사이토카인의 분비량도 농도 의존적으로 감소하였다. 또한 SMYEE는 croton oil로 부종을 유발한 마우스모델에서 귀부종 억제효과를 나타내었고, 조직의 진피 두께 및 mast cell의 수가 현저히 감소하였음을 확인하였다. 이를 통해 SMYEE는 염증 반응의 전사인자인 $NF-{\kappa}B$ 및 MAPKs의 활성을 조절함으로써 iNOS와 COX-2의 발현 및 전염증성 매개인자인 NO, IL-6, $TNF-{\alpha}$$IL-1{\beta}$의 분비를 억제하여 항염증 활성을 가지는 것을 확인하였다. 현재까지 미야베 모자반내의 항염증 효능 물질에 관한 연구는 보고되지 않고 있으며 향후 실험을 통해 미야베 모자반 에탄올 추출물로부터 항염증 효과를 가지는 유효성분을 밝히기 위한 분리 연구를 진행할 예정이다.

NF-κB 신호경로에서 CLK3의 새로운 음성 조절자로서의 기능 (CLK3 is a Novel Negative Regulator of NF-κB Signaling)

  • 전별은;권찬성;이지은;우예린;김상우
    • 생명과학회지
    • /
    • 제32권11호
    • /
    • pp.833-840
    • /
    • 2022
  • 만성 염증은 종양의 발생 및 진행과 밀접하게 연관되어 있다. 핵인자 kappa B (NF-κB)는 5개의 전사인자로 구성되며 염증 반응에 필수적인 역할을 한다. 다양한 암에서 NF-κB의 조절장애가 보고되고 있으며 NF-κB 조절이 암 치료에 있어 핵심 표적이 된다. 본 연구에서는 CDC Like Kinase 3 (CLK3)를 NF-κB 신호전달 경로를 조절하는 새로운 키네이스임을 확인하였다. 우리는 CLK3가 정규 및 비정규 NF-κB 신호전달경로를 억제하는 것을 밝혔다. CLK3 과발현 또는 knock-down 세포주를 이용한 루시퍼레이즈 분석 결과, 이 키네이스는 TNFα와 PMA가 유도하는 정규 NF-κB 신호전달경로 활성을 억제하였다. 또한 CLK3 과발현은 잘 알려진 비정규 NF-κB 신호경로 유도제인 NF-κB-inducing kinase (NIK) 또는 CD40에 의한 NF-κB 활성을 저해하였다. 추가적으로 CLK3의 NF-κB 신호전달 저해기전을 설명하고자 TNFα 처리 후 웨스턴 블롯 분석으로 이 키네이스 영향권 내에 있는 NF-κB 신호경로 분자들을 식별하였다. 그 결과 CLK3가 TAK1, IKKα/α, p65, IκBα 및 ERK1/2-MAPK의 인산화/활성화를 저해하여 TNFα 처리로 유도된 NF-κB 및 MAPK 신호경로를 모두 억제함을 밝혔다. 앞으로의 연구는 CLK3가 정규 및 비정규 NF-κB 경로를 억제하는 기작을 밝히는데 초점을 맞출 것이다. 위 연구 결과들을 토대로 CLK3가 NF-κB 신호전달경로의 새로운 음성 조절자로써 기능함을 제시하였다.