DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of Extracts from Caesalpinia sappan L. on Skin Inflammation

TPA로 유도된 마우스 귀 부종 동물모델에서 소목추출물의 항염증 효과

  • Eum, Won Sik (Dept. of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Lee, Kwang-Jae (Gangwon Agricultural Research and Extention Services) ;
  • Kim, Dae Won (Dept. of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Lim, Soon Sung (Dept. of Food Sciences and Nutrition and RIC Center, Hallym University) ;
  • Kang, Il-Jun (Dept. of Food Sciences and Nutrition and RIC Center, Hallym University) ;
  • Park, Jinseu (Dept. of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo Young (Dept. of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • 음원식 (한림대학교 바이오메디컬학과 및 생명공학연구소) ;
  • 이광재 (강원도농업기술원) ;
  • 김대원 (한림대학교 바이오메디컬학과 및 생명공학연구소) ;
  • 임순성 (한림대학교 식품영양학과 및 RIC 센터) ;
  • 강일준 (한림대학교 식품영양학과 및 RIC 센터) ;
  • 박진서 (한림대학교 바이오메디컬학과 및 생명공학연구소) ;
  • 최수영 (한림대학교 바이오메디컬학과 및 생명공학연구소)
  • Received : 2012.11.12
  • Accepted : 2012.12.14
  • Published : 2013.03.31

Abstract

This study investigated the anti-inflammatory effects of extracts from Caesalpinia sappan L. (CSL) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema in mice. Skin inflammation was detected by immunohistochemistry and the protein and mRNA expression levels of cyclooxygenase-2 (COX-2) and cytokines (IL-6, IL-$1{\beta}$ and TNF-${\alpha}$) detected by Western blotting and RT-PCR. The activation of nuclear factor-kappa B (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK) were analyzed by Western blotting. CSL extracts markedly inhibited the TPA-induced expression of COX-2 and pro-inflammatory cytokines. Also, CSL extracts significantly reduced the activation of NF-${\kappa}B$ and MAPK. These results suggest that CSL extracts may serve as therapeutic agents against skin diseases related to inflammation.

본 연구를 통하여 TPA로 유도한 마우스 귀 부종 염증반응에 대한 소목추출물의 항염증 효능과 기전을 확인하였다. 소목추출물은 TPA로 유도한 마우스 귀 부종을 억제하였으며, TPA에 의한 염증관련 단백질인 COX-2 발현 및 cytokine(IL-6, TNF-${\alpha}$ 그리고 IL-$1{\beta}$)의 mRNA 발현을 현저히 감소시켰다. 또한 TPA에 의한 NF-${\kappa}B$ 및 MAPK의 활성을 억제하였다. 본 연구 결과, 소목추출물은 NF-${\kappa}B$ 및 MAPK의 신호전달을 억제함으로서 항염증 효능을 나타내었다.

Keywords

References

  1. Liao JF, Chiou WF, Shen YC, Wang GJ, Chen CF. 2011. Anti-inflammatory and anti-infectious effects of Evodia rutaecarpa (Wuzhuyu) and its major bioactive components. Chin Med 6: 6. https://doi.org/10.1186/1749-8546-6-6
  2. Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454: 428-435. https://doi.org/10.1038/nature07201
  3. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. 2009. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8: 18-30. https://doi.org/10.1016/j.arr.2008.07.002
  4. Sarkar D, Fisher PB. 2006. Molecular mechanisms of aging- associated inflammation. Cancer Lett 236: 13-23. https://doi.org/10.1016/j.canlet.2005.04.009
  5. Fierro IM, Serhan CN. 2001. Mechanisms in anti-inflammation and resolution: the role of lipoxins and aspirintriggered lipoxins. Braz J Med Biol Res 34: 555-566. https://doi.org/10.1590/S0100-879X2001000500002
  6. Yun HJ, Hoe SK, Yi HS, Kim CH, Kim BW, Park SD. 2008. Anti-inflammatory effect of Injinho-tang in RAW 264.7 cells. Kor J Herbology 23: 169-178.
  7. Matsuda H, Kageura T, Morikawa T, Toguchida I, Harima S, Yoshikawa M. 2000. Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharideactivated macrophages. Bioorg Med Chem Lett 10: 323-327 https://doi.org/10.1016/S0960-894X(99)00702-7
  8. Leem HH, Kim EO, Seo MJ, Choi SW. 2011. Antioxidant and anti-inflammatory activities of Eugenol and its derivatives from clove (Eugenia caryophyllata Thunb.). J Korean Soc Food Sci Nutr 40: 1361-1370. https://doi.org/10.3746/jkfn.2011.40.10.1361
  9. Sung MS, Kim YH, Choi YM, Ham HM, Jeong HS, Lee JS. 2011. Anti-inflammatory effect of Erigeron annuus L. flower extract through heme oxygenase-1 induction in RAW264.7 macrophages. J Korean Soc Food Sci Nutr 40: 1507-1511. https://doi.org/10.3746/jkfn.2011.40.11.1507
  10. Cho HJ, Shim JH, So HS, Park JHY. 2012. Mechanism underlying the anti-inflammatory action of piceatannol induced by lipopolysaccharide. J Korean Soc Food Sci Nutr 41: 1226-1234. https://doi.org/10.3746/jkfn.2012.41.9.1226
  11. Back NI, Jeon SG, Ahn EM, Hahn JT, Bahn JH, Jang JS, Cho SW, Park JK, Choi SY. 2000. Anticonvulsant compounds from the wood of Caesalpinia sappan L. Arch Pharm Res 23: 344-348. https://doi.org/10.1007/BF02975445
  12. Chiang LC, Chiang W, Liu MC, Lin CC. 2003. In vivo antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J Antimicrob Chemother 52: 194-198. https://doi.org/10.1093/jac/dkg291
  13. Choi SY, Yang KM, Jeon SD, Kim JH, Khil LY, Chang TS, Moon CK. 1997. Brazilin modulates immune function mainly by augmenting T cell activity in halothane administered mice. Planta Med 63: 405-408. https://doi.org/10.1055/s-2006-957722
  14. Kim DS, Back NI, Oh SR, Jung KY, Lee IS, Lee HK. 1997. NMR assignment of brazilein. Phytochemistry 46: 177-178. https://doi.org/10.1016/S0031-9422(96)00874-6
  15. Nguyen MT, Awale S, Tezuka Y, Ueda JY, Tran QI, Kadota S. 2006. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense . Planta Med 72: 46-51. https://doi.org/10.1055/s-2005-873181
  16. Zhao H, Bai H, Wang Y, Li W, Koike K. 2008. A new homoisoflavan from Caesalpinia sappan. J Nat Med 62: 325-327. https://doi.org/10.1007/s11418-008-0231-6
  17. de Oliveira LFC, Edwards HGM, Velozo ES, Nesbitt M. 2002. Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vib Spectrosc 28: 243-249. https://doi.org/10.1016/S0924-2031(01)00138-2
  18. Kwon HJ, Kim YH, Nam KW, Kim SK, Bang IS, Han MD. 2010. Antibacterial activities of Caesalpinia sappan L. extract and structural analysis of its related brazilin. Kor J Microbiol Biotechnol 38: 105-111.
  19. Shin DW. 2003. Screening and using of antioxidative effect and antimicrobial activity from plant. Food Science and Industry 36(3): 81-89.
  20. Xie YW, Ming DS, Xu HX, Dong H, But PP. 2000. Vasorelaxing effects of Caesalpinia sappan involvement of endogenous nitric oxide. Life Sci 67: 1913-1918. https://doi.org/10.1016/S0024-3205(00)00772-4
  21. Park YH, Kim HY, Lim SH, Kim KH, Park DS, Lee JH, Park CG, Park CB, Kim S. 2011. Effect of Aceriphyllum rossii ethanol extract on lipid metabolism in rats fed a high-fat diet. J Korean Soc Food Sci Nutr 40: 1411-1416. https://doi.org/10.3746/jkfn.2011.40.10.1411
  22. Stanley PL, Steiner S, Havens M, Tramposch KM. 1991. Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol 4: 262-271. https://doi.org/10.1159/000210960
  23. Kim SY, Jeong HJ, Kim DW, Kim MJ, An JJ, Sohn EJ, Kang HW, Shin MJ, Ahn EH, Kwon SW, Kim DS, Cho SW, Park J, Eum WS, Choi SY. 2011. Transduced PEP-1-FK506BP inhibits the inflammatory response in the Raw 264.7 cell and mouse models. Immunobiology 216: 771-781. https://doi.org/10.1016/j.imbio.2010.12.008
  24. Lee SH, Kim DW, Eom SA, Jun SY, Park M, Kim DS, Kwon HJ, Kwon HY, Han KH, Park J, Hwang HS, Eum WS, Choi SY. 2012. Suppression of 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein. BMB Rep 45: 354-359. https://doi.org/10.5483/BMBRep.2012.45.6.036
  25. Crofford LJ. 1997. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl 49: 15-19.
  26. Chun KS, Surh YJ. 2004. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 15: 1089-1100.
  27. De Vry CG, Valdez M, Lazarov M, Muhr E, Buelow R, Fong T, Iyer S. 2005. Topical application of a novel immunomodulatory peptide, RDP58, reduces skin inflammation in the phorbol ester-induced dermatitis model. J Invest Dermatol 125: 473-481. https://doi.org/10.1111/j.0022-202X.2005.23831.x
  28. Murakawa M, Yamaoka K, Tanaka Y, Fukuda Y. 2006. Involvement of tumor necrosis factor (TNF)-${\alpha}$ in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem Pharmacol 71: 1331-1336. https://doi.org/10.1016/j.bcp.2006.01.005
  29. Ghosh S, Hayden MS. 2008. New regulators of NF-${\kappa}B$ in inflammation. Nat Rev Immunol 8: 837-848. https://doi.org/10.1038/nri2423
  30. Majdalawieh A, Ro HS. 2010. Regulation of $I{\kappa}B{\alpha}$ function and NF-${\kappa}B$ signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010: 823821.
  31. Hawiger J. 2001. Innate immunity and inflammation: a transcriptional paradigm. Immunol Res 23: 99-109. https://doi.org/10.1385/IR:23:2-3:099
  32. Nam NH. 2006. Naturally occurring NF-${\kappa}B$ inhibitors. Mini Rev Med Chem 6: 945-951. https://doi.org/10.2174/138955706777934937
  33. Lee HN, Kim JK, Kwon GT, Shim JH, Kim JD, Park JHY. 2012. Anti-inflammatory effects of ethanol extract from bark of Acer barbinerve Maxim. J Korean Soc Food Sci Nutr 41: 1242-1247. https://doi.org/10.3746/jkfn.2012.41.9.1242
  34. Ho YS, Lai CS, Liu HI, Ho SY, Tai C, Pan MH, Wang YJ. 2007. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation. Biochem Pharmacol 73: 1786-1795. https://doi.org/10.1016/j.bcp.2006.12.006
  35. Song HY, Lee JA, Ju SM, Yoo KY, Won MH, Kwon HJ, Eum WS, Jang SH, Choi SY, Park J. 2008. Topical transduction of superoxide dismutase mediated by HIV-1 Tat protein transduction domain ameliorates 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced inflammation in mice. Biochem Pharmacol 75: 1348-1357. https://doi.org/10.1016/j.bcp.2007.11.015

Cited by

  1. Anti-Inflammatory Effects of Xanthoceras sorbifolia Seeds Oil on RAW264.7 Macrophages and TPA-Induced Ear Edema Mice vol.29, pp.4, 2013, https://doi.org/10.7747/JFS.2013.29.4.324
  2. Synergistic Effect of Brazilein in Combination with Hygromycin-b against Staphylococcus aureus vol.22, pp.6, 2014, https://doi.org/10.7783/KJMCS.2014.22.6.504
  3. LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과 vol.24, pp.8, 2013, https://doi.org/10.11002/kjfp.2017.24.8.1149
  4. 소목(蘇木)과 그 지표물질인 brazilin이 인간 유래 각질 형성 세포의 tight junction 유전자 발현에 미치는 영향 vol.32, pp.2, 2013, https://doi.org/10.15188/kjopp.2018.04.32.2.106