References
- Abdelrahim, M., Baker, C. H., Abbruzzese, J. L., and Safe, S. (2006) Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J. Natl. Cancer. Inst. 98, 855-868. https://doi.org/10.1093/jnci/djj232
- Bergman, M., Djaldetti, M., Salman, H., and Bessler, H. (2011) Inflammation and colorectal cancer: does aspirin affect the interaction between cancer and immune cells? Inflammation 34, 22-28. https://doi.org/10.1007/s10753-010-9203-6
- Corell, T. (1994) Pharmacology of tolfenamic acid. Pharmacol. Toxicol. 75 Suppl 2, 14-21. https://doi.org/10.1111/j.1600-0773.1994.tb01991.x
- Din, F. V., Stark, L. A., and Dunlop, M. G. (2005) Aspirin-induced nuclear translocation of NFkappaB and apoptosis in colorectal cancer is independent of p53 status and DNA mismatch repair proficiency. Br. J. Cancer 92, 1137-1143. https://doi.org/10.1038/sj.bjc.6602455
- Dvoriantchikova, G., and Ivanov, D. (2014) Tumor necrosis factoralpha mediates activation of NF-kappaB and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways. Eur. J. Neurosci. 40, 3171-3178. https://doi.org/10.1111/ejn.12710
- Eslin, D., Sankpal, U. T., Lee, C., Sutphin, R. M., Maliakal, P., Currier, E., Sholler, G., Khan, M., and Basha, R. (2013) Tolfenamic acid inhibits neuroblastoma cell proliferation and induces apoptosis: a novel therapeutic agent for neuroblastoma. Mol. Carcinog. 52, 377-386. https://doi.org/10.1002/mc.21866
- Jeong, J. B., Choi, J., Baek, S. J., and Lee, S. H. (2013a) Reactive oxygen species mediate tolfenamic acid-induced apoptosis in human colorectal cancer cells. Arch. Biochem. Biophys. 537, 168-175. https://doi.org/10.1016/j.abb.2013.07.016
- Jeong, J. B., Shin, Y. K., and Lee, S. H. (2013b) Anti-inflammatory activity of patchouli alcohol in RAW264.7 and HT-29 cells. Food Chem. Toxicol. 55, 229-233. https://doi.org/10.1016/j.fct.2012.12.062
- Jeong, J. B., Yang, X., Clark, R., Choi, J., Baek, S. J., and Lee, S. H. (2013c) A mechanistic study of the proapoptotic effect of tolfenamic acid; involvement of NF-kappaB activation. Carcinogenesis 34, 2350-2360. https://doi.org/10.1093/carcin/bgt224
- Kang, S. U., Shin, Y. S., Hwang, H. S., Baek, S. J., Lee, S. H., and Kim, C. H. (2012) Tolfenamic acid induces apoptosis and growth inhibition in head and neck cancer: involvement of NAG-1 expression. PLoS One 7, e34988. https://doi.org/10.1371/journal.pone.0034988
- Kankaanranta, H., Moilanen, E., and Vapaatalo, H. (1991) Tolfenamic acid inhibits leukotriene B4-induced chemotaxis of polymorphonuclear leukocytes in vitro. Inflammation 15, 137-143. https://doi.org/10.1007/BF00917508
- Kopp, E., and Ghosh, S. (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 956-959. https://doi.org/10.1126/science.8052854
- Lamb, J. A., Ventura, J. J., Hess, P., Flavell, R. A., and Davis, R. J. (2003) JunD mediates survival signaling by the JNK signal transduction pathway. Mol. Cell 11, 1479-1489. https://doi.org/10.1016/S1097-2765(03)00203-X
- Lee, S. H., Bahn, J. H., Whitlock, N. C., and Baek, S. J. (2010) Activating transcription factor 2 (ATF2) controls tolfenamic acid-induced ATF3 expression via MAP kinase pathways. Oncogene 29, 5182-5192. https://doi.org/10.1038/onc.2010.251
- Liggett, J. L., Zhang, X., Eling, T. E., and Baek, S. J. (2014) Anti-tumor activity of non-steroidal anti-inflammatory drugs: cyclooxygenaseindependent targets. Cancer Lett. 346, 217-224. https://doi.org/10.1016/j.canlet.2014.01.021
- Paik, J. H., Ju, J. H., Lee, J. Y., Boudreau, M. D., and Hwang, D. H. (2000) Two opposing effects of non-steroidal anti-inflammatory drugs on the expression of the inducible cyclooxygenase. Mediation through different signaling pathways. J. Biol. Chem. 275, 28173-28179.
- Pathi, S., Li, X., and Safe, S. (2014) Tolfenamic acid inhibits colon cancer cell and tumor growth and induces degradation of specificity protein (Sp) transcription factors. Mol. Carcinogenesis 53 Suppl 1, E53-61.
- Proudman, K. E., and McMillan, R. M. (1991) Are tolfenamic acid and tenidap dual inhibitors of 5-lipoxygenase and cyclo-oxygenase? Agents Actions 34, 121-124. https://doi.org/10.1007/BF01993255
- Stark, L. A., Din, F. V., Zwacka, R. M., and Dunlop, M. G. (2001) Aspirin- induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J. 15, 1273-1275. https://doi.org/10.1096/fj.00-0529fje
- Stark, L. A., Reid, K., Sansom, O. J., Din, F. V., Guichard, S., Mayer, I., Jodrell, D. I., Clarke, A. R., and Dunlop, M. G. (2007) Aspirin activates the NF-kappaB signalling pathway and induces apoptosis in intestinal neoplasia in two in vivo models of human colorectal cancer. Carcinogenesis 28, 968-976.
- Yin, M. J., Yamamoto, Y., and Gaynor, R. B. (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396, 77-80. https://doi.org/10.1038/23948
Cited by
- Immune Modulation as an Effective Adjunct Post-exposure Therapeutic for B. pseudomallei vol.10, pp.10, 2016, https://doi.org/10.1371/journal.pntd.0005065
- Induction of Cyclin D1 Proteasomal Degradation by Branch Extracts from Abeliophyllum distichum Nakai in Human Colorectal Cancer Cells vol.28, pp.6, 2015, https://doi.org/10.7732/kjpr.2015.28.6.682
- Src and Syk contribute to the anti-inflammatory activities of Achyranthes aspera ethanolic extract vol.206, 2017, https://doi.org/10.1016/j.jep.2017.05.013
- Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-kB translocation to nucleus and cell cycle phase distribution vol.31, 2016, https://doi.org/10.1016/j.jnutbio.2016.01.003
- Knockdown of NIK and IKKβ-Binding Protein (NIBP) Reduces Colorectal Cancer Metastasis through Down-Regulation of the Canonical NF-κΒ Signaling Pathway and Suppression of MAPK Signaling Mediated through ERK and JNK vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0170595
- Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities vol.24, pp.6, 2016, https://doi.org/10.4062/biomolther.2016.027
- JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38 vol.21, pp.3, 2017, https://doi.org/10.4196/kjpp.2017.21.3.345
- Fenamates as Potential Therapeutics for Neurodegenerative Disorders vol.10, pp.3, 2021, https://doi.org/10.3390/cells10030702