• Title/Summary/Keyword: NF$\kappa$B

Search Result 1,677, Processing Time 0.034 seconds

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

  • Xu, Chunlan;Sun, Rui;Qiao, Xiangjin;Xu, Cuicui;Shang, Xiaoya;Niu, Weining;Chao, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.313-320
    • /
    • 2014
  • The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia + vitamin E (250 mg/kg $BW^*d$) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma ($IFN-{\gamma}$) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and $I{\kappa}B{\alpha}$, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha ($HIF-1{\alpha}$ and $HIF-2{\alpha}$), Toll-like receptors (TLR4), P-$I{\kappa}B{\alpha}$ and nuclear factor-${\kappa}B$ p65(NF-${\kappa}B$ P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-${\kappa}B$ signaling pathway.

Effect of Vigna angularis on Toll-like Receptor Activation and Pro-inflammatory Cytokine Production (적소두 추출물이 톨유사수용체 활성 및 염증유발 사이토카인의 생성에 미치는 영향)

  • Kim, Mi-Hwa;Jeoung, See-Hwa;Lee, Seung-Woong;Kim, Hyun-Kyu;Park, Chan-Sun;Jeon, Byung-Hun;Oh, Hyun-Mee;Rho, Mun-Chual
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.511-518
    • /
    • 2012
  • The mechanisms of Toll-like receptor (TLR) signaling have been the focus of extensive studies because TLRs are the target of therapeutic intervention on multiple diseases. In this study, we investigated the inhibitory potential of Vigna angularis (azuki bean) on the TLR signaling. The effect of Vigna angularis extract (JSD) on TLR activation was investigated by assessing NF-${\kappa}B$ and AP-1 inducible secreted embryonic alkaline phosphatase (SEAP) activity. JSD significantly inhibited SEAP activity induced by poly I:C (TLR3 ligand) and poly I (TLR7 ligand) in a dose-dependent manner at concentration below 100 ${\mu}g/ml$ with no sign of cytotoxicity. Pretreatment of JSD markedly suppressed mRNA expressions of pro-inflammatory cytokines and adhesive molecules such as TNF-${\alpha}$, IL-6, RANTES, MCP-1 and ICAM-1 induced by TLR ligands. It also diminished the phosphorylation of $I{\kappa}B$ kinase and $I{\kappa}B$, and followed by $I{\kappa}B$-mediated nuclear translocation of p50, p65, and phosphorylation of p38, JNK, and IRF signaling pathway. In conclusion, our results suggest that Vigna angularis has inhibitory activity on TLR-3 and -7 signaling and it can be further developed as a remedy in curing TLR-related multiple diseases.

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Suppressive Effects of Defatted Green Tea Seed Ethanol Extract on Cancer Cell Proliferation in HepG2 Cells (HepG2 Cell에서 녹차씨박 에탄올 추출물의 암세포 증식 억제효과)

  • Noh, Kyung-Hee;Min, Kwan-Hee;Seo, Bo-Young;Kim, Hye-Ok;Kim, So-Hee;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • Defatted green tea seed was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether, ethyl acetate and butanol. The ethanol and butanol extracts showed greater increases in antiproliferation potential against liver cancer cells than petroleum ether, ethyl acetate, $H_2O$, and hot water extracts did. Thus, this study was carried out to investigate the anti-proliferative actions of defatted green tea seed ethanol extract (DGTSE) in HepG2 cancer cells. The DGTSE contained catechins including EGC ($1039.1{\pm}15.2\;g/g$), tannic acid ($683.5{\pm}17.61\;{\mu}g/g$), EC ($62.4{\pm}5.00\;{\mu}g/g$), ECG ($24.4{\pm}7.81\;{\mu}g/g$), EGCG ($20.9{\pm}0.96\;{\mu}g/g$) and gallic acid ($2.4{\pm}0.68\;{\mu}g/g$), but caffeic acid was not detected when analyzed by HPLC. The anti-proliferation effect of DGTSE toward HepG2 cells was 83.13% when treated at $10\;{\mu}g$/mL, of DGTSE, offering an $IC_{50}$ of $6.58\;{\mu}g$/mL. DGTSE decreased CYP1A1 and CYP1A2 protein expressions in a dose-dependent manner. Quinone reductase and antioxidant response element (ARE)-luciferase activities were increased about 2.6 and 1.94-fold at a concentration of $20\;{\mu}g$/mL compared to a control group, respectively. Enhancement of phase II enzyme activity by DGTSE was shown to be mediated via interaction with ARE sequences in genes encoding the phase enzymes. DGTSE significantly (p<0.05) suppressed prostaglandin $E_2$ level, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) protein expressions, and NF${\kappa}$B translocation, but did not affected nitric oxide production. From the above results, it is concluded that DGTSE may ameliorate tumor and inflammatory reactions through the elevation of phase II enzyme activities and suppression of NF${\kappa}$B translocation and TNF-${\alpha}$ protein expressions, which support the cancer cell anti-proliferative effects of DGTSE in HepG2 cells.

Antioxidative Effects of Lycium chinense Miller on Cisplatin-induced Nephrotoxicity in Rats (Cisplatin으로 유도된 급성신부전증에 대한 지골피(地骨皮)의 항산화효과)

  • Jung, Yu-Sun;Park, Chan-Hum;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.92-105
    • /
    • 2014
  • Objectives : Cisplatin is a widely used cancer therapy drug. However, nephrotoxicity resulting in increased oxidative stress is a major side effect of cisplatin chemotherapy, thereby limiting its chemotherapeutic use. Lycium chinense Miller (LCM) has been used as a traditional herbal medicine in various febrile and inflammatory diseases such as night sweat, cough, nosebleed, bronchitis, pulmonary tuberculosis, etc. In this study we investigated the protective and antioxidative potential of LCM against cisplatin-induced nephrotoxicity in rats. Methods : Twenty-four 8-week-old male Wistar rats were divided into four groups: normal untreated; cisplatin treatment only; LCM 10 mg/kg plus cisplatin treatment; and LCM 30 mg/kg plus cisplatin treatment. Twenty-four hours after the last cisplatin injection, all the rats were sacrificed, and serological changes were evaluated. The levels of NF-${\kappa}B$ activity and NOX-4, $p47^{phox}$, $p22^{phox}$, COX-2, iNOS, SOD, catalase expressions were analyzed in Western blot analysis. Results : Cisplatin injection caused an increase in the BUN level, which is a reliable indicator of renal toxicity. The levels of BUN, renal ROS, and renal TBARS were significantly reduced in the LCM groups compared with the cisplatin-only groups. The levels of $p47^{phox}$ and $p22^{phox}$, which are NADPH oxidase subunits, were increased in the cisplatin-only groups, whereas they were decreased in the LCM groups. The levels of renal NF-${\kappa}B$ activity and COX-2, iNOS expressions were increased significantly in the cisplatin-only groups compared with the normal groups, whereas they were decreased in the LCM groups. Compared with the cisplatin-only groups, renal GSH and GSH/GSSG increased in the LCM groups. Also, the administration of LCM increased levels of SOD and catalase as compared with the cisplatin-only groups. Conclusions : These results suggest that LCM protects cisplatin-induced nephrotoxicity via a mechanism that may involves the inhibition of oxidative stress by the activation of antioxidants.

Anti-inflammation Effect of Gynura Procumbens extract (명월초 추출물의 항염 효과에 대한 연구)

  • Jeon, Hyeong-Ju;Kwon, Hye-Jin
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.515-520
    • /
    • 2016
  • This study conducted the research about the positive effects of Gynura Procumbens on preventing dermatitis and infectious diseases the contemporary people have. To do it, this study measured the concentration of NF-kB, the extract of Gynura Procumbens. In this regard, cytosol, the extract of Gynura Procumbens, and nucleus went through the separation process. The concentration of major NF-kB among various factors to control inflammation was measured with the use of HDF cell. Regarding RAW264.7 cell, the amounts of NO to play an important role in reacting the skin immune system as the media of neural transmission were analyzed. The outcome about the extracts of Gynura Procumbens injected show that it can be expected that as the NF-kB protein and mRNA band were reduced, Gynura Procumbens would have anti-inflammatory effects that could contribute to preventing dermatitis and diseases. In addition, the extracts of Gynura Procumbens have significantly reduced NO with their concentration increasing. In other words, Gynura Procumbens are considered to regulate dependently the production of NO in the concentration of extracts. Thus there is an expectation that the more intensive research would be conducted to heal dermatitis. And it is deemed that Gynura Procumbens would be used as materials for cosmetics as well as foods that the contemporary people can widely consume if a more careful research about anti-inflammatory effects would be sustained on a human bodies' clinical level.

The Effects of Bee Venom on iNOS, TNF-α and NF-kB in RAW 264.7 Cells (봉약침액(蜂藥鍼液)이 RAW 264.7 세포의 iNOS, TNF-α 및 NF-kB에 미치는 영향(影響 ))

  • Kim, Goon-Joong;Sim, Sung-Yong;Lee, Seong-No;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.6 no.2
    • /
    • pp.45-56
    • /
    • 2003
  • Objective : The purpose of this study was to investigate the effects of Bee Venom on the lipopolysaccharide(LPS), sodium nitroprusside(SNP), hydrogen peroxide$(H_2O_2)$-induced expression inducilble nitric oxide synthetase(iNOS), tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) and nuclear factor kappa B(NF-kB) in RAW 264.7 cells, a murine macrophage cell line. Method : The expressions of expression iNOS and TNF-${\alpha}$ were determined by western blotting with corresponding antibodies. The expressions of expression NF-kB was assayed by EMSA method. Results : 1. The 0.5, 1 and $5{\mu}g/mg$ of bee venom on LPS-induced expression of iNOS, the $5{\mu}g/mg$ of bee venom on SNP-induced expression of iNOS and the $1{\mu}g/mg$ of bee venom on $H_2O_2$-induced expression of iNOS compared with control were inhibited significantly. 2. The 0.5, 1 and $5{\mu}g/mg$ of bee venom inhibited significantly LPS and $H_2O_2$-induced expression of TNF-${\alpha}$ compared with control, respectively. The $0.5{\mu}g/mg$ of bee venom increased significantly SNP-induced expression of TNF-${\alpha}$ compared with control. 3. The $5{\mu}g/mg$ of bee venom on LPS-induced expression of NF-kB, the $0.5{\mu}g/mg$ of bee venom on SNP-induced expression of NF-kB and the 0.5, $5{\mu}g/mg$ of bee venom on $H_2O_2$-induced expression of NF-kB were inhibited significantly compared with control, respectively.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

  • Zhao, Xiaomeng;Feng, Xueke;Ye, Nan;Wei, Panpan;Zhang, Zhanwei;Lu, Wenyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.261-272
    • /
    • 2021
  • Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.

Echinacea purpurea extract inhibits LPS-induced inflammatory response by interfering with TLR4-mediated NF-κB and MAPKs signaling pathways

  • Kim, Hae Lim;Min, Daeun;Lee, Sung-Kwon;Choi, Bong-Keun;Lee, Hae Jin;Lee, Dong-Ryung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2022
  • Echinacea purpurea (Asteraceae family) is widely used in the European countries and the United States due to its proven immune enhancement and anti-inflammatory effects. Echinacea purpurea has been reported prevent and treat upper respiratory tract infections and common cold, but the underlying molecular mechanisms are not well understood. In the present study, we examined the anti-inflammatory effects and molecular mechanisms of Echinacea purpurea (EP) extract using lipopolysaccharide (LPS)-stimulated signal pathways in RAW264.7 cells. Our results suggest that EP extract exerts anti-inflammatory effects by down-regulating the expression of LPS-induced toll-like receptor 4 (TLR4), subsequently inhibiting the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways and suppression of the release of pro-inflammatory cytokines. These results suggest that EP extract is a potential therapeutic agent for inflammatory diseases.